forked from coal-digital/coal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reset.rs
272 lines (238 loc) · 10.1 KB
/
reset.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
use coal_api::{
consts::*,
error::OreError,
loaders::*,
state::{Bus, Config},
};
use solana_program::{
msg,
account_info::AccountInfo, clock::Clock, entrypoint::ProgramResult,
program_error::ProgramError, program_pack::Pack, sysvar::Sysvar
};
use spl_token::state::Mint;
use crate::utils::AccountDeserialize;
/// Reset tops up the bus balances, updates the base reward rate, and sets up the ORE program for the next epoch.
pub fn process_reset<'a, 'info>(accounts: &'a [AccountInfo<'info>], _data: &[u8]) -> ProgramResult {
// Load accounts.
let [signer, bus_0_info, bus_1_info, bus_2_info, bus_3_info, bus_4_info, bus_5_info, bus_6_info, bus_7_info, config_info, mint_info, treasury_info, treasury_tokens_info, token_program] =
accounts
else {
return Err(ProgramError::NotEnoughAccountKeys);
};
load_signer(signer)?;
load_bus(bus_0_info, 0, true)?;
load_bus(bus_1_info, 1, true)?;
load_bus(bus_2_info, 2, true)?;
load_bus(bus_3_info, 3, true)?;
load_bus(bus_4_info, 4, true)?;
load_bus(bus_5_info, 5, true)?;
load_bus(bus_6_info, 6, true)?;
load_bus(bus_7_info, 7, true)?;
load_config(config_info, true)?;
load_mint(mint_info, MINT_ADDRESS, true)?;
load_treasury(treasury_info, true)?;
load_treasury_tokens(treasury_tokens_info, true)?;
load_program(token_program, spl_token::id())?;
let busses: [&AccountInfo; BUS_COUNT] = [
bus_0_info, bus_1_info, bus_2_info, bus_3_info, bus_4_info, bus_5_info, bus_6_info,
bus_7_info,
];
// Validate enough time has passed since the last reset.
let mut config_data = config_info.data.borrow_mut();
let config = Config::try_from_bytes_mut(&mut config_data)?;
let clock = Clock::get().or(Err(ProgramError::InvalidAccountData))?;
if config
.last_reset_at
.saturating_add(EPOCH_DURATION)
.gt(&clock.unix_timestamp)
{
return Ok(());
}
// Update timestamp.
config.last_reset_at = clock.unix_timestamp;
// Max supply check.
let mint = Mint::unpack(&mint_info.data.borrow()).expect("Failed to parse mint");
if mint.supply.ge(&MAX_SUPPLY) {
return Err(OreError::MaxSupply.into());
}
// For each 5% of total supply, reduce the BUS_EPOCH_REWARDS and MAX_EPOCH_REWARDS by 50%
// The halving is done to incentivize the accumulation of the token.
// Halving should only occur at 10% intervals.
let supply_percentage = (mint.supply as f64 / MAX_SUPPLY as f64) * 100.0;
let halving_factor = 2u64.pow((supply_percentage / 10.0) as u32);
let adjusted_bus_epoch_rewards = BUS_EPOCH_REWARDS / halving_factor;
let adjusted_max_epoch_rewards = MAX_EPOCH_REWARDS / halving_factor;
// Reset bus accounts and calculate actual rewards mined since last reset.
let mut total_remaining_rewards = 0u64;
let mut total_theoretical_rewards = 0u64;
let mut top_balance = 0u64;
for i in 0..BUS_COUNT {
// Parse bus account.
let mut bus_data = busses[i].data.borrow_mut();
let bus = Bus::try_from_bytes_mut(&mut bus_data)?;
// Track top balance.
if bus.top_balance.gt(&top_balance) {
top_balance = bus.top_balance;
}
// Track accumulators.
total_remaining_rewards = total_remaining_rewards.saturating_add(bus.rewards);
total_theoretical_rewards =
total_theoretical_rewards.saturating_add(bus.theoretical_rewards);
// Reset bus account for new epoch.
bus.rewards = adjusted_bus_epoch_rewards;
bus.theoretical_rewards = 0;
bus.top_balance = 0;
}
let total_epoch_rewards = adjusted_max_epoch_rewards.saturating_sub(total_remaining_rewards);
// Update global top balance.
config.top_balance = top_balance;
// Update base reward rate for next epoch.
config.base_reward_rate =
calculate_new_reward_rate(config.base_reward_rate, total_theoretical_rewards);
// If base reward rate is too low, increment min difficulty by 1 and double base reward rate.
if config.base_reward_rate.le(&BASE_REWARD_RATE_MIN_THRESHOLD) {
config.min_difficulty = config.min_difficulty.checked_add(1).unwrap();
config.base_reward_rate = config.base_reward_rate.checked_mul(2).unwrap();
}
// If base reward rate is too high, decrement min difficulty by 1 and halve base reward rate.
if config.base_reward_rate.ge(&BASE_REWARD_RATE_MAX_THRESHOLD) && config.min_difficulty.gt(&1) {
config.min_difficulty = config.min_difficulty.checked_sub(1).unwrap();
config.base_reward_rate = config.base_reward_rate.checked_div(2).unwrap();
}
// Fund the treasury token account.
let amount = MAX_SUPPLY
.saturating_sub(mint.supply)
.min(total_epoch_rewards);
solana_program::program::invoke_signed(
&spl_token::instruction::mint_to(
&spl_token::id(),
mint_info.key,
treasury_tokens_info.key,
treasury_info.key,
&[treasury_info.key],
amount,
)?,
&[
token_program.clone(),
mint_info.clone(),
treasury_tokens_info.clone(),
treasury_info.clone(),
],
&[&[TREASURY, &[TREASURY_BUMP]]],
)?;
Ok(())
}
/// This function calculates what the new reward rate should be based on how many total rewards
/// were mined in the prior epoch. The math is largely identitical to function used by the Bitcoin
/// network to update the difficulty between each epoch.
///
/// new_rate = current_rate * (target_rewards / actual_rewards)
///
/// The new rate is then smoothed by a constant factor to avoid large fluctuations. In Ore's case,
/// the epochs are short (60 seconds) so a smoothing factor of 2 has been chosen. That is, the reward rate
/// can at most double or halve from one epoch to the next.
pub(crate) fn calculate_new_reward_rate(current_rate: u64, epoch_rewards: u64) -> u64 {
// Avoid division by zero. Leave the reward rate unchanged, if detected.
if epoch_rewards.eq(&0) {
return current_rate;
}
// Calculate new reward rate.
let new_rate = (current_rate as u128)
.saturating_mul(TARGET_EPOCH_REWARDS as u128)
.saturating_div(epoch_rewards as u128) as u64;
// Smooth reward rate so it cannot change by more than a constant factor from one epoch to the next.
let new_rate_min = current_rate.saturating_div(SMOOTHING_FACTOR);
let new_rate_max = current_rate.saturating_mul(SMOOTHING_FACTOR);
let new_rate_smoothed = new_rate.min(new_rate_max).max(new_rate_min);
// Prevent reward rate from dropping below 1 or exceeding BUS_EPOCH_REWARDS and return.
new_rate_smoothed.max(1).min(BUS_EPOCH_REWARDS)
}
#[cfg(test)]
mod tests {
use rand::{distributions::Uniform, Rng};
use crate::calculate_new_reward_rate;
use coal_api::consts::{
BASE_REWARD_RATE_MIN_THRESHOLD, BUS_EPOCH_REWARDS, MAX_EPOCH_REWARDS, SMOOTHING_FACTOR,
TARGET_EPOCH_REWARDS,
};
const FUZZ_SIZE: u64 = 10_000;
#[test]
fn test_calculate_new_reward_rate_target() {
let current_rate = 1000;
let new_rate = calculate_new_reward_rate(current_rate, TARGET_EPOCH_REWARDS);
assert!(new_rate.eq(¤t_rate));
}
#[test]
fn test_calculate_new_reward_rate_div_by_zero() {
let current_rate = 1000;
let new_rate = calculate_new_reward_rate(current_rate, 0);
assert!(new_rate.eq(¤t_rate));
}
#[test]
fn test_calculate_new_reward_rate_lower() {
let current_rate = 1000;
let new_rate = calculate_new_reward_rate(
current_rate,
TARGET_EPOCH_REWARDS.saturating_add(1_000_000_000),
);
assert!(new_rate.lt(¤t_rate));
}
#[test]
fn test_calculate_new_reward_rate_lower_edge() {
let current_rate = BASE_REWARD_RATE_MIN_THRESHOLD;
let new_rate = calculate_new_reward_rate(current_rate, TARGET_EPOCH_REWARDS + 1);
assert!(new_rate.lt(¤t_rate));
}
#[test]
fn test_calculate_new_reward_rate_lower_fuzz() {
let mut rng = rand::thread_rng();
for _ in 0..FUZZ_SIZE {
let current_rate: u64 = rng.sample(Uniform::new(1, BUS_EPOCH_REWARDS));
let actual_rewards: u64 =
rng.sample(Uniform::new(TARGET_EPOCH_REWARDS, MAX_EPOCH_REWARDS));
let new_rate = calculate_new_reward_rate(current_rate, actual_rewards);
assert!(new_rate.lt(¤t_rate));
}
}
#[test]
fn test_calculate_new_reward_rate_higher() {
let current_rate = 1000;
let new_rate = calculate_new_reward_rate(
current_rate,
TARGET_EPOCH_REWARDS.saturating_sub(1_000_000_000),
);
assert!(new_rate.gt(¤t_rate));
}
#[test]
fn test_calculate_new_reward_rate_higher_fuzz() {
let mut rng = rand::thread_rng();
for _ in 0..FUZZ_SIZE {
let current_rate: u64 = rng.sample(Uniform::new(1, BUS_EPOCH_REWARDS));
let actual_rewards: u64 = rng.sample(Uniform::new(1, TARGET_EPOCH_REWARDS));
let new_rate = calculate_new_reward_rate(current_rate, actual_rewards);
assert!(new_rate.gt(¤t_rate));
}
}
#[test]
fn test_calculate_new_reward_rate_max_smooth() {
let current_rate = 1000;
let new_rate = calculate_new_reward_rate(current_rate, 1);
assert!(new_rate.eq(¤t_rate.saturating_mul(SMOOTHING_FACTOR)));
}
#[test]
fn test_calculate_new_reward_rate_min_smooth() {
let current_rate = 1000;
let new_rate = calculate_new_reward_rate(current_rate, u64::MAX);
assert!(new_rate.eq(¤t_rate.saturating_div(SMOOTHING_FACTOR)));
}
#[test]
fn test_calculate_new_reward_rate_max_inputs() {
let new_rate = calculate_new_reward_rate(BUS_EPOCH_REWARDS, MAX_EPOCH_REWARDS);
assert!(new_rate.eq(&BUS_EPOCH_REWARDS.saturating_div(SMOOTHING_FACTOR)));
}
#[test]
fn test_calculate_new_reward_rate_min_inputs() {
let new_rate = calculate_new_reward_rate(1, 1);
assert!(new_rate.eq(&1u64.saturating_mul(SMOOTHING_FACTOR)));
}
}