-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_them_all.sh
executable file
·46 lines (37 loc) · 1.71 KB
/
run_them_all.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/env bash
#
# author: jan 2022
# cassio batista - https://cassota.gitlab.io
# TODO add stages with the aid of parse_options.sh
set -e
s_time=$(date +'%F_%T')
bash run_data_prep.sh --skip-rescoring true --use-dev-as-train true || exit 1
bash run_gmm.sh || exit 1
#bas run_gmm_b.sh || exit 1 # for an "in-depth", dataset-wise analysis.
# README README README README README README README README README README README
# README README README README README README README README README README README
# README README README README README README README README README README README
# XXX XXX XXX XXX XXX XXX Train a TDNN-F chain model XXX XXX XXX XXX XXX XXX
# README README README README README README README README README README README
# README README README README README README README README README README README
# README README README README README README README README README README README
# NOTE: if you *do not* have an NVIDIA card, then open up the
# following script and set the following options on
# stage 14 to `train.py`:
# --trainer.optimization.num-jobs-initial=2
# --trainer.optimization.num-jobs-final=3
# --use-gpu=false
# we do not recommend training the DNN on CPU, though.
# you'd better set up Kaldi on Google Colab instead.
# NOTE: if you do have multiple GPU cards, on the other hand,
# then set the parameters as the following:
# --trainer.optimization.num-jobs-initial=2
# --trainer.optimization.num-jobs-final=4
# --use-gpu=true
# (the example above assumes you have 4 NVIDIA cards)
bash run_tdnn.sh || exit 1
bash run_decode.sh || exit 1
e_time=$(date +'%F_%T')
echo "$0: success"
echo $s_time
echo $e_time