forked from d2l-ai/d2l-en
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.ini
181 lines (123 loc) · 5.4 KB
/
config.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
[project]
# The project name, used as the filename of the package and the PDF file. For
# example, if set to d2l-book, then will build d2l-book.zip and d2l-book.pdf
name = d2l-en
# Book title. It will be displayed on the top-right of the HTML page and the
# front page of the PDF file
title = Dive into Deep Learning
author = Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola
copyright = 2021, All authors. Licensed under CC-BY-SA-4.0 and MIT-0.
release = 0.17.0
[build]
# A list of wildcards to indicate the markdown files that need to be evaluated as
# Jupyter notebooks.
notebooks = *.md */*.md
# A list of files that will be copied to the build folder.
resources = img/ d2l/ d2l.bib setup.py
# Files that will be skipped.
exclusions = README.md STYLE_GUIDE.md INFO.md CODE_OF_CONDUCT.md CONTRIBUTING.md contrib/*md
# If True (default), then will evaluate the notebook to obtain outputs.
eval_notebook = True
tabs = mxnet, pytorch, tensorflow
[html]
# A list of links that is displayed on the navbar. A link consists of three
# items: name, URL, and a fontawesome icon
# (https://fontawesome.com/icons?d=gallery). Items are separated by commas.
# PDF, http://numpy.d2l.ai/d2l-en.pdf, fas fa-file-pdf,
header_links = MXNet, https://d2l.ai/d2l-en.pdf, fas fa-file-pdf,
PyTorch, https://d2l.ai/d2l-en-pytorch.pdf, fas fa-file-pdf,
Notebooks, https://d2l.ai/d2l-en.zip, fab fa-python,
Courses, https://courses.d2l.ai, fas fa-user-graduate,
GitHub, https://github.com/d2l-ai/d2l-en, fab fa-github,
中文版, https://zh.d2l.ai, fas fa-external-link-alt
favicon = static/favicon.png
html_logo = static/logo-with-text.png
include_css = static/d2l.css
[pdf]
# The file used to post-process the generated tex file.
post_latex = ./static/post_latex/main.py
latex_logo = static/logo.png
main_font = Source Serif Pro
sans_font = Source Sans Pro
mono_font = Inconsolata
[library]
version_file = d2l/__init__.py
[library-mxnet]
lib_file = d2l/mxnet.py
lib_name = np
# Map from d2l.xx to np.xx
simple_alias = ones_like, ones, zeros_like, zeros, arange, meshgrid, sin, sinh, cos, cosh, tanh,
linspace, exp, log, tensor -> array, normal -> random.normal,
randn -> random.randn, expand_dims
rand -> random.rand, matmul -> dot, int32, int64, float32,
concat -> concatenate, stack, abs, eye
# Map from d2l.xx(a, *args, **kwargs) to a.xx(*args, **kwargs)
fluent_alias = numpy -> asnumpy, reshape, to -> as_in_context, reduce_sum -> sum,
argmax, astype, reduce_mean -> mean, swapaxes, repeat
alias =
size = lambda a: a.size
transpose = lambda a: a.T
nn_Module = nn.Block
sigmoid = npx.sigmoid
batch_matmul = npx.batch_dot
reverse_alias =
d2l.size\(([\w\_\d]+)\) -> \1.size
d2l.transpose\(([\w\_\d]+)\) -> \1.T
d2l.nn_Module -> nn.Block
d2l.sigmoid -> npx.sigmoid
d2l.batch_matmul -> npx.batch_dot
[library-pytorch]
lib_file = d2l/torch.py
lib_name = torch
simple_alias = ones_like, ones, zeros_like, zeros, tensor, arange, meshgrid, sin, sinh, cos, cosh,
tanh, linspace, exp(, log, normal, rand, randn, matmul, int32, int64, float32,
concat -> cat, stack, abs, eye, sigmoid, batch_matmul -> bmm
fluent_alias = numpy -> detach().numpy, size -> numel, reshape, to,
reduce_sum -> sum, argmax, astype -> type, transpose -> t,
reduce_mean -> mean, expand_dims -> unsqueeze, swapaxes, repeat
alias =
nn_Module = nn.Module
reverse_alias =
d2l.nn_Module -> nn.Module
[library-tensorflow]
lib_file = d2l/tensorflow.py
lib_name = tf
simple_alias = reshape, ones_like, ones, zeros_like, zeros, meshgrid, sin, sinh, cos, cosh, tanh,
linspace, exp, normal -> random.normal, rand -> random.uniform,
matmul, reduce_sum, reduce_mean, argmax, tensor -> constant,
arange -> range, astype -> cast, int32, int64, float32, transpose,
concat, stack, abs, eye, log -> math.log, sigmoid, expand_dims, repeat,
batch_matmul -> matmul
fluent_alias = numpy,
alias =
size = lambda a: tf.size(a).numpy()
reverse_alias =
d2l.size\(([\w\_\d]+)\) -> tf.size(\1).numpy()
d2l.nn_Module -> tf.keras.Model
[deploy]
other_file_s3urls = s3://d2l-webdata/releases/d2l-en/d2l-en-0.7.0.zip
s3://d2l-webdata/releases/d2l-en/d2l-en-0.7.1.zip
google_analytics_tracking_id = UA-96378503-10
[colab]
github_repo = mxnet, d2l-ai/d2l-en-colab
pytorch, d2l-ai/d2l-pytorch-colab
tensorflow, d2l-ai/d2l-tensorflow-colab
replace_svg_url = img, http://d2l.ai/_images
libs = mxnet, mxnet, -U mxnet-cu101==1.7.0
mxnet, d2l, d2l==RELEASE
pytorch, d2l, d2l==RELEASE
tensorflow, d2l, d2l==RELEASE
[sagemaker]
github_repo = mxnet, d2l-ai/d2l-en-sagemaker
pytorch, d2l-ai/d2l-pytorch-sagemaker
tensorflow, d2l-ai/d2l-tensorflow-sagemaker
kernel = mxnet, conda_mxnet_p36
pytorch, conda_pytorch_p36
tensorflow, conda_tensorflow_p36
libs = mxnet, mxnet, -U mxnet-cu101==1.7.0
mxnet, d2l, .. # installing d2l
pytorch, d2l, .. # installing d2l
tensorflow, d2l, .. # installing d2l
[slides]
top_right = <img height=80px src='http://d2l.ai/_static/logo-with-text.png'/>
github_repo = pytorch, d2l-ai/d2l-pytorch-slides