-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathm0_preprocess.py
162 lines (121 loc) · 4.76 KB
/
m0_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# import pkgs
import os
import pickle
import numpy as np
import pandas as pd
# path to the current file
path = os.path.dirname(os.path.abspath(__file__))
def get_feedback_subid(fname, exp_id):
d = {'rew': 'gain',
'pain': 'loss',
'gain': 'gain',
'loss': 'loss'}
if exp_id == 'exp1':
sub_id = fname.split('_')[3]
feedback_type = fname.split('_')[4]
elif exp_id == 'exp2':
sub_id = fname.split('_')[4]
feedback_type = fname.split('_')[3]
return sub_id, d[feedback_type]
def remake_cols_idx(data, sub_id, feedback_type, exp_id, seed=42):
'''Core preprocess fn
'''
# random generator
rng = np.random.RandomState(seed)
## Replace some undesired col name
col_dict = { 'choice': 'humanAct',
'Unnamed: 0': 'trial',
'green_mag': 'mag0',
'blue_mag': 'mag1',
'block': 'b_type',
'green_outcome':'state'}
data.rename(columns=col_dict, inplace=True)
## Change the action index
# the raw data: left stim--1, right stim--0
# I prefer: left stim--0, right stim--1
data['humanAct'] = data['humanAct'].fillna(rng.choice(2))
data['humanAct'] = data['humanAct'].apply(lambda x: int(1-x))
## Change the state index
# the raw data: left stim--1, right stim--0
# I prefer: left stim--0, right stim--1
data['state'] = data['state'].apply(lambda x: int(1-x))
## Change the block type index
data['b_type'] = data['b_type'].apply(lambda x: x[:3])
## Check if correct
data['match'] = data.apply(lambda x: int(x['humanAct']==x['state']), axis=1)
## Add the sub id col
data['sub_id'] = sub_id
## Add the feedback type
data['feedback_type'] = feedback_type
## Add which experiment id
data['exp_id'] = exp_id
return data
def get_subinfo():
exp_id = 'exp1'
d1 = pd.read_csv(f'{path}/data/participant_table_{exp_id}.csv')[
['MID', 'group_just_patients']]
d1 = d1.rename(columns={'group_just_patients': 'group'})
d1['group'] = d1['group'].fillna('HC')
exp_id = 'exp2'
d2 = pd.read_csv(f'{path}/data/participant_table_{exp_id}.csv')[['MID']]
d2['group'] = 'HC'
sub_info = pd.concat([d1, d2], axis=0)
sub_info = sub_info.rename(columns={'MID': 'sub_id'})
# get the group
sub_info1 = sub_info.groupby(by=['sub_id'])['group'].apply('-'.join).reset_index()
sub_info1['group'] = sub_info1['group'].apply(lambda x: x.split('-')[0])
# get the syndrome
sub_info2 = pd.read_csv(f'{path}/data/bifactor.csv')
sub_info2 = sub_info2.rename(columns={'Unnamed: 0': 'sub_id'})
# paste them up
sub_info = sub_info1.join(sub_info2.set_index('sub_id'),
on='sub_id', how='left')
return sub_info
def preprocess(exp=['exp1', 'exp2']):
for_analyze = []
for exp_id in exp:
# all files under the folder
files = os.listdir(f'{path}/data/data_raw_{exp_id}')
for file in files:
# get sub_id and feedback_type
sub_id, feedback_type = get_feedback_subid(file, exp_id)
# remake some columns
fname = f'{path}/data/data_raw_{exp_id}/{file}'
block_data = remake_cols_idx(pd.read_csv(fname),
sub_id=sub_id, feedback_type=feedback_type, exp_id=exp_id)
# append into storages
for_analyze.append(block_data)
# append into a large dataframe
for_analyze = pd.concat(for_analyze, axis=0)
# get the subject information
sub_info = get_subinfo()
# join two dataframe on key 'sub_id'
for_analyze = for_analyze.join(sub_info.set_index('sub_id'),
on='sub_id', how='left')
# save for analyze
idx = 'all' if (len(exp) == 2) else exp[0]
fname = f'{path}/data/{idx}_data.csv'
for_analyze.to_csv(fname, index = False, header=True)
return for_analyze
def split_data(data, mode):
# create storage
for_fit = {}
# split the data for fit
sub_Lst = data['sub_id'].unique()
exp_Lst = data['exp_id'].unique()
idx = '' if (len(exp_Lst) == 2) else exp_Lst[0]
for sub_id in sub_Lst:
for_fit[sub_id] = {}
condi = f'sub_id=="{sub_id}" & feedback_type=="{mode}"'
block_data = data.query(condi)
if block_data.empty is not True:
for_fit[sub_id] = {0: block_data.reset_index()}
else:
for_fit.pop(f'{sub_id}')
# save for fit
with open(f'{path}/data/{mode}_{idx}data.pkl', 'wb')as handle:
pickle.dump(for_fit, handle)
if __name__ == '__main__':
data = preprocess(['exp1'])
split_data(data, mode='gain')
split_data(data, mode='loss')