-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMac_adjusted_date.py
5284 lines (4930 loc) · 343 KB
/
Mac_adjusted_date.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import re
import pandas as pd
from collections import defaultdict
import matplotlib.pyplot as plt
#%matplotlib inline
import numpy as np
import pickle
import sys
from med_reports import MedicalReport
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.stats import multitest
import scipy.stats as stats
from datetime import datetime
from tableone import TableOne
import math
import nltk
#------------Demographics Extraction--------------#
file = 'Demographics.txt'
Demographics = open(file, 'r')
text = Demographics.read()
Demographics.close()
pattern = re.compile(r'(\d+)\|((?:(?!\|).)*)\|((?:(?!\|).)*)\|(\w+)\|(\d+\/\d+\/\d+)\|(\d+)\|((?:(?!\|).)*)\|((?:(?!\|).)*)\|((?:(?!\|).)*)\|((?:(?!\|).)*)\|((?:(?!\|).)*)\|((?:(?!\|).)*)\|((?:(?!\|).)*)\|((?:(?!\|).)*)\|(.*)')
matches = pattern.findall(text)
demodict_age = defaultdict(list)
demodict_dob = defaultdict(list)
demodict_race = defaultdict(list)
demodict_death = defaultdict(list)
demodict_gender = defaultdict(list)
demodict_EMPI = defaultdict(list)
demodict_datedeath = defaultdict(list)
demodict_MRN = defaultdict(list)
demodict_MRN_type = defaultdict(list)
for match in matches:
demodict_age[match[0]] = match[5]
demodict_dob[match[0]] = match[4]
demodict_race[match[0]] = match[7]
demodict_death[match[0]] = match[13]
demodict_gender[match[0]] = match[3]
demodict_EMPI[match[0]] = match[0]
demodict_datedeath[match[0]] = match[14]
Age = pd.Series(demodict_age)
Age = pd.DataFrame(Age, columns = ['Age'])
dob = pd.Series(demodict_dob)
dob = pd.DataFrame(dob, columns = ['DOB'])
Race = pd.Series(demodict_race)
Race = pd.DataFrame(Race, columns = ['Race'])
Death = pd.Series(demodict_death)
Death = pd.DataFrame(Death, columns = ['Death'])
Gender = pd.Series(demodict_gender)
Gender = pd.DataFrame(Gender, columns = ['Gender'])
Death = pd.Series(demodict_death)
Death = pd.DataFrame(Death, columns = ['Living?'])
Date_death = pd.Series(demodict_datedeath)
Date_death = pd.DataFrame(Date_death, columns = ['Date of Death'])
NTB_diagnosis_mindate_pickle_in = open('NTB_diagnosis_mindate.pickle','rb') ##### Note that Diagnosis file should be extracted first in order to produce data frames for date of first diagnosis, date of last diagnosis, and dataframe for comorbidities (this expedities extraction speed because .pickle files can be loaded)
NTB_diagnosis_mindate = pickle.load(NTB_diagnosis_mindate_pickle_in)
NTB_diagnosis_mindate = pd.DataFrame(NTB_diagnosis_mindate)
Demographics = []
Age_atDx = NTB_diagnosis_mindate.join(dob)
Age_atDx['DOB'] = pd.to_datetime(Age_atDx['DOB'])
Age_atDx['Age at the time of Dx'] = ((Age_atDx['Date of first Dx'] - Age_atDx['DOB']).dt.days/365)
Age_atDx['Age at the time of Dx']
Demographics = Race.join(Gender)
Demographics = Demographics.join(Death, how='outer')
Demographics = Demographics.join(Date_death, how='outer')
Demographics.index.name = 'Index'
Demographics = Demographics.astype({'Gender':'category', 'Race':'category'})
Demographics['Race'] = Demographics['Race'].str.replace(r'(^.*(White|WHITE).*)', 'White')
Demographics['Race'] = Demographics['Race'].str.replace(r'(^.*(Black|BLACK).*)', 'Black/African American')
Demographics['Race'] = Demographics['Race'].str.replace(r'(^.*(Not|not|no|NO|other|OT).*)', 'Not Available')
Demographics['Race'] = Demographics['Race'].str.replace(r'(^.*(Hispa|hispa|Latino|latino).*)', 'Hispanic/Latino')
Demographics['Race'] = Demographics['Race'].str.replace(r'(^.*(Asian|ASIAN).*)', 'Asian')
Demographics['Race'] = Demographics['Race'].str.replace(r'(^.*(Hawa|HA).*)', 'Native Hawaiian')
Demographics['Race'] = Demographics['Race'].str.replace(r'(^.*(Americ).*)', 'American Indian')
Demographics['Race'] = Demographics['Race'].str.replace(r'(^.*(Asian|ASIAN).*)', 'Asian')
def func(c):
if c['Race'] == 'White':
return 'White/Caucasian'
else:
return 'Race other than White/Caucasian'
Demographics['Race'] = Demographics.apply(func, axis=1)
Demographics['Living?'] = Demographics['Living?'].str.replace(r'(^.*(Not|no|not|No).*)', 'Living')
Demographics['Living?'] = Demographics['Living?'].str.replace(r'(^.*(Reported|reported).*)', 'Deceased')
Demographics['Date of Death'] = Demographics['Date of Death'].str.replace(r'(^.*(Unknown).*)', '')
Demographics['Date of Death'] = pd.to_datetime(Demographics['Date of Death'])
Demographics['Age at the time of Dx'] = Age_atDx['Age at the time of Dx']
Demographics
# Demographics['Age at the time of Dx'] = Demographics['Age at the time of Dx'].fillna(0).astype(int)
# Demographics['Age at the time of Dx'
#---------------Medications-------------------#
Med_file = 'Medications.txt'
med_f = open(Med_file, 'r+')
Med_text = med_f.read()
pattern_med =re.compile(r'(\d+)\|(MGH|BWH)\|(\d+)\|(\d+\/\d+\/\d+)\|((?:(?!\|).)*)\|(?:(?!\|).)*\|(?:(?!\|).)*\|(?:(?!\|).)*\|(?:(?!\|).)*\|(?:(?!\|).)*\|(?:(?!\|).)*\|')
matches_med = pattern_med.findall(Med_text)
NTB_diagnosis_mindate
ethambutol_date = []
ethambutol = []
ethambutol_EMPI = []
clarithromycin = []
clarithromycin_date = []
clarithromycin_EMPI = []
rifampicin = []
rifampicin_date = []
rifampicin_EMPI = []
rifabutin = []
rifabutin_date = []
rifabutin_EMPI = []
bedaquiline = []
bedaquiline_date = []
bedaquiline_EMPI = []
isoniazid = []
isoniazid_date = []
isoniazid_EMPI = []
clofazimine = []
clofazimine_date = []
clofazimine_EMPI = []
amikacin = []
amikacin_date = []
amikacin_EMPI = []
azithromycin = []
azithromycin_date = []
azithromycin_EMPI = []
moxifloxacin = []
moxifloxacin_date = []
moxifloxacin_EMPI = []
levofloxacin = []
levofloxacin_date =[]
levofloxacin_EMPI = []
kanamycin = []
kanamycin_date = []
kanamycin_EMPI = []
tobramycin = []
tobramycin_date = []
tobramycin_EMPI = []
capreomycin = []
capreomycin_date = []
capreomycin_EMPI = []
gentamicin = []
gentamicin_date = []
gentamicin_EMPI = []
linezolid = []
linezolid_date = []
linezolid_EMPI = []
cefoxitin = []
cefoxitin_date = []
cefoxitin_EMPI = []
ceftaroline = []
ceftaroline_date = []
ceftaroline_EMPI = []
imipenem = []
imipenem_date = []
imipenem_EMPI = []
meropenem = []
meropenem_date = []
meropenem_EMPI = []
tigecycline = []
tigecycline_date = []
tigecycline_EMPI = []
bactrim = []
bactrim_date = []
bactrim_EMPI = []
doxycycline = []
doxycycline_date = []
doxycycline_EMPI = []
for match_med in pattern_med.findall(Med_text):
if re.search(r'(?i)ethambutol', match_med[4]):
ethambutol_date.append(match_med[3])
ethambutol_EMPI.append(match_med[0])
ethambutol.append('Ethambutol')
elif re.search(r'(?i)clarithromycin', match_med[4]):
clarithromycin_date.append(match_med[3])
clarithromycin_EMPI.append(match_med[0])
clarithromycin.append('Clarithromycin')
elif re.search(r'(?i)(rifamp|rifabutin)', match_med[4]):
rifampicin_date.append(match_med[3])
rifampicin_EMPI.append(match_med[0])
rifampicin.append('Rifampicin')
elif re.search(r'(?i)rifabutin', match_med[4]):
rifabutin_date.append(match_med[3])
rifabutin_EMPI.append(match_med[0])
rifabutin.append('Rifampicin')
elif re.search(r'(?i)Bedaquiline', match_med[4]):
bedaquiline_date.append(match_med[3])
bedaquiline_EMPI.append(match_med[0])
bedaquiline.append('Bedaquiline')
elif re.search(r'(?i)isoniazid', match_med[4]):
isoniazid_date.append(match_med[3])
isoniazid_EMPI.append(match_med[0])
isoniazid.append('Isoniazid')
elif re.search(r'(?i)clofazimine', match_med[4]):
clofazimine_date.append(match_med[3])
clofazimine_EMPI.append(match_med[0])
clofazimine.append('Clofazimine')
elif re.search(r'(?i)amikacin', match_med[4]):
amikacin_date.append(match_med[3])
amikacin_EMPI.append(match_med[0])
amikacin.append('Amikacin')
elif re.search(r'(?i)azithromycin', match_med[4]):
azithromycin_date.append(match_med[3])
azithromycin_EMPI.append(match_med[0])
azithromycin.append('Azithromycin')
elif re.search(r'(?i)Moxifloxacin', match_med[4]):
moxifloxacin_date.append(match_med[3])
moxifloxacin_EMPI.append(match_med[0])
moxifloxacin.append('Moxifloxacin')
elif re.search(r'(?i)Levofloxacin', match_med[4]):
levofloxacin_date.append(match_med[3])
levofloxacin_EMPI.append(match_med[0])
levofloxacin.append('Levofloxacin')
elif re.search(r'(?i)Kanamycin', match_med[4]):
kanamycin_date.append(match_med[3])
kanamycin_EMPI.append(match_med[0])
kanamycin.append('Kanamycin')
elif re.search(r'(?i)Tobramycin', match_med[4]):
tobramycin_date.append(match_med[3])
tobramycin_EMPI.append(match_med[0])
tobramycin.append('Tobramycin')
elif re.search(r'(?i)Capreomycin', match_med[4]):
capreomycin_date.append(match_med[3])
capreomycin_EMPI.append(match_med[0])
capreomycin.append('Capreomycin')
elif re.search(r'(?i)Gentamicin', match_med[4]):
gentamicin_date.append(match_med[3])
gentamicin_EMPI.append(match_med[0])
gentamicin.append('Gentamicin')
elif re.search(r'(?i)Linezolid', match_med[4]):
linezolid_date.append(match_med[3])
linezolid_EMPI.append(match_med[0])
linezolid.append('Linezolid')
elif re.search(r'(?i)Cefoxitin', match_med[4]):
cefoxitin_date.append(match_med[3])
cefoxitin_EMPI.append(match_med[0])
cefoxitin.append('Cefoxitin')
elif re.search(r'(?i)Ceftaroline', match_med[4]):
ceftaroline_date.append(match_med[3])
ceftaroline_EMPI.append(match_med[0])
ceftaroline.append('Ceftaroline')
elif re.search(r'(?i)Imipenem', match_med[4]):
imipenem_date.append(match_med[3])
imipenem_EMPI.append(match_med[0])
imipenem.append('Imipenem')
elif re.search(r'(?i)Meropenem', match_med[4]):
meropenem_date.append(match_med[3])
meropenem_EMPI.append(match_med[0])
meropenem.append('Meropenem')
elif re.search(r'(?i)Tigecycline', match_med[4]):
tigecycline_date.append(match_med[3])
tigecycline_EMPI.append(match_med[0])
tigecycline.append('Tigecycline')
elif re.search(r'(?i)Bactrim', match_med[4]):
bactrim_date.append(match_med[3])
bactrim_EMPI.append(match_med[0])
bactrim.append('Bactrim')
elif re.search(r'(?i)Doxycycline', match_med[4]):
doxycycline_date.append(match_med[3])
doxycycline_EMPI.append(match_med[0])
doxycycline.append('Doxycycline')
Ethambutol = pd.DataFrame({'Index':ethambutol_EMPI, 'Date':ethambutol_date, 'Ethambutol':ethambutol})
Ethambutol['Date'] = pd.to_datetime(Ethambutol['Date'])
Ethambutol_gb = Ethambutol.groupby('Index')
Ethambutol_min = Ethambutol_gb.agg({'Date':np.min})
Ethambutol_max = Ethambutol_gb.agg({'Date':np.max})
Ethambutol_min = Ethambutol_min.rename(columns={"Date": "Date of first Ethambutol Rx"})
Ethambutol_max = Ethambutol_max.rename(columns={"Date": "Date of last Ethambutol Rx"})
Ethambutol_minmax = Ethambutol_min.join(Ethambutol_max, how='outer')
Ethambutol_minmax['Duration of Ethambutol Rx days'] = ((Ethambutol_minmax['Date of last Ethambutol Rx'] - Ethambutol_minmax['Date of first Ethambutol Rx']).dt.days).abs()
Ethambutol_counts = Ethambutol_gb['Ethambutol'].value_counts()
Ethambutol_counts = pd.DataFrame(Ethambutol_counts)
Ethambutol_counts = Ethambutol_counts.rename(columns={"Ethambutol": "# of Ethambutol Rx"})
Ethambutol_counts = Ethambutol_counts.reset_index()
Ethambutol_counts = Ethambutol_counts.set_index('Index')
Ethambutol_minmax['# of Ethambutol Rx'] = Ethambutol_counts["# of Ethambutol Rx"]
def function_Ethambutol(c):
if c['Duration of Ethambutol Rx days'] >= 274:
return 'Multiple Courses'
else:
return np.nan
Ethambutol_minmax['Multiple Ethambutol Tx courses'] = Ethambutol_minmax.apply(function_Ethambutol, axis=1)
Ethambutol = Ethambutol.set_index('Index')
Ethambutol = Ethambutol.drop('Ethambutol', axis=1)
Ethambutol_ori = Ethambutol
Ethambutol = Ethambutol.join(Ethambutol_max, how='outer')
Ethambutol['Difference'] = ((Ethambutol['Date'] - Ethambutol['Date of last Ethambutol Rx']).dt.days).abs()
Ethambutol_recent = Ethambutol.loc[Ethambutol['Difference'] <= 274]
Ethambutol_recent = Ethambutol_recent.reset_index()
Ethambutol_recent_txcourse = Ethambutol_recent.loc[Ethambutol_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Ethambutol_minmax['Most recent Ethambutol course start date'] = Ethambutol_recent_txcourse['Date']
Ethambutol = Ethambutol.drop('Date of last Ethambutol Rx', axis=1)
Ethambutol['Date of first Ethambutol Rx'] = Ethambutol_minmax['Date of first Ethambutol Rx']
Ethambutol['Difference'] = ((Ethambutol['Date'] - Ethambutol['Date of first Ethambutol Rx']).dt.days)
Ethambutol['Multiple Ethambutol Tx Courses'] = Ethambutol_minmax['Multiple Ethambutol Tx courses']
Ethambutol = Ethambutol.loc[Ethambutol['Multiple Ethambutol Tx Courses'] == 'Multiple Courses']
Ethambutol = Ethambutol.drop('Multiple Ethambutol Tx Courses', axis=1)
Ethambutol_previous = Ethambutol.loc[Ethambutol['Difference'] <= 274]
Ethambutol_previous = Ethambutol_previous.reset_index()
Ethambutol_previous_tx = Ethambutol_previous.loc[Ethambutol_previous.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Ethambutol_minmax['Prior Ethambutol course end date'] = Ethambutol_previous_tx['Date']
Ethambutol_minmax_copy = Ethambutol_ori.join(Ethambutol_minmax)
def function_Ethambutol1(c):
if c['Duration of Ethambutol Rx days'] >= 1460:
if c['Date'] in (c['Prior Ethambutol course end date'], c['Most recent Ethambutol course start date']):
return '3rd course recieved'
else:
return np.nan
Ethambutol_minmax_copy['3rd course of Ethambutol?'] = Ethambutol_minmax_copy.apply(function_Ethambutol1, axis=1)
Ethambutol_minmax_copy = Ethambutol_minmax_copy['3rd course of Ethambutol?']
Ethambutol_minmax_copy = Ethambutol_minmax_copy.dropna().drop_duplicates()
Ethambutol_minmax = Ethambutol_minmax.join(Ethambutol_minmax_copy)
col = ['Date of first Ethambutol Rx', 'Prior Ethambutol course end date', 'Most recent Ethambutol course start date', 'Date of last Ethambutol Rx', 'Multiple Ethambutol Tx courses', '3rd course of Ethambutol?', 'Duration of Ethambutol Rx days', '# of Ethambutol Rx']
Ethambutol_minmax = Ethambutol_minmax[col]
Ethambutol_minmax
Clarithromycin = pd.DataFrame({'Index':clarithromycin_EMPI, 'Date':clarithromycin_date, 'Clarithromycin':clarithromycin})
Clarithromycin['Date'] = pd.to_datetime(Clarithromycin['Date'])
Clarithromycin_min = Clarithromycin.loc[Clarithromycin.groupby(['Index'])['Date'].idxmin()].set_index(['Index'])
Clarithromycin_max = Clarithromycin.loc[Clarithromycin.groupby(['Index'])['Date'].idxmax()].set_index(['Index'])
Clarithromycin_min = Clarithromycin_min.rename(columns={"Date": "Date of first Clarithromycin Rx"})
Clarithromycin_max = Clarithromycin_max.rename(columns={"Date": "Date of last Clarithromycin Rx"})
Clarithromycin_min['Date of last Clarithromycin Rx'] = Clarithromycin_max['Date of last Clarithromycin Rx']
Clarithromycin_minmax= Clarithromycin_min
Clarithromycin_minmax['Duration of Clarithromycin Rx days'] = (Clarithromycin_minmax['Date of last Clarithromycin Rx'] - Clarithromycin_minmax['Date of first Clarithromycin Rx']).dt.days
Clarithromycin_gb = Clarithromycin.groupby('Index')
Clarithromycin_counts = Clarithromycin_gb['Clarithromycin'].value_counts()
Clarithromycin_counts = pd.DataFrame(Clarithromycin_counts)
Clarithromycin_counts = Clarithromycin_counts.rename(columns={"Clarithromycin": "# of Clarithromycin Rx"})
Clarithromycin_counts = Clarithromycin_counts.reset_index()
Clarithromycin_counts = Clarithromycin_counts.set_index('Index')
Clarithromycin_minmax['# of Clarithromycin Rx'] = Clarithromycin_counts["# of Clarithromycin Rx"]
def function_clarithro(c):
if c['Duration of Clarithromycin Rx days'] >= 274:
return 'Multiple Courses'
else:
return np.nan
Clarithromycin_minmax['Multiple Clarithromycin Tx courses'] = Clarithromycin_minmax.apply(function_clarithro, axis=1)
Clarithromycin = Clarithromycin.set_index('Index')
Clarithromycin = Clarithromycin.drop('Clarithromycin', axis=1)
Clarithromycin_ori = Clarithromycin
Clarithromycin = Clarithromycin.join(Clarithromycin_max, how='outer')
Clarithromycin['Difference'] = ((Clarithromycin['Date'] - Clarithromycin['Date of last Clarithromycin Rx']).dt.days).abs()
Clarithromycin_recent = Clarithromycin.loc[Clarithromycin['Difference'] <= 274]
Clarithromycin_recent = Clarithromycin_recent.reset_index()
Clarithromycin_recent_txcourse = Clarithromycin_recent.loc[Clarithromycin_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Clarithromycin_minmax['Most recent Clarithromycin course start date'] = Clarithromycin_recent_txcourse['Date']
Clarithromycin = Clarithromycin.drop('Date of last Clarithromycin Rx', axis=1)
Clarithromycin['Date of first Clarithromycin Rx'] = Clarithromycin_minmax['Date of first Clarithromycin Rx']
Clarithromycin['Difference'] = ((Clarithromycin['Date'] - Clarithromycin['Date of first Clarithromycin Rx']).dt.days)
Clarithromycin['Multiple Clarithromycin Tx Courses'] = Clarithromycin_minmax['Multiple Clarithromycin Tx courses']
Clarithromycin = Clarithromycin.loc[Clarithromycin['Multiple Clarithromycin Tx Courses'] == 'Multiple Courses']
Clarithromycin = Clarithromycin.drop('Multiple Clarithromycin Tx Courses', axis=1)
Clarithromycin_previous = Clarithromycin.loc[Clarithromycin['Difference'] <= 274]
Clarithromycin_previous = Clarithromycin_previous.reset_index()
Clarithromycin_previous_tx = Clarithromycin_previous.loc[Clarithromycin_previous.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Clarithromycin_minmax['Prior Clarithromycin course end date'] = Clarithromycin_previous_tx['Date']
Clarithromycin_minmax = Clarithromycin_minmax.drop('Clarithromycin', axis=1)
Clarithromycin_minmax_copy = Clarithromycin_ori.join(Clarithromycin_minmax)
def function_Clarithromycin1(c):
if c['Duration of Clarithromycin Rx days'] >= 1460:
if c['Date'] in (c['Prior Clarithromycin course end date'], c['Most recent Clarithromycin course start date']):
return '3rd course recieved'
else:
return np.nan
Clarithromycin_minmax_copy['3rd course of Clarithromycin?'] = Clarithromycin_minmax_copy.apply(function_Clarithromycin1, axis=1)
Clarithromycin_minmax_copy = Clarithromycin_minmax_copy['3rd course of Clarithromycin?']
Clarithromycin_minmax_copy = Clarithromycin_minmax_copy.dropna().drop_duplicates()
Clarithromycin_minmax = Clarithromycin_minmax.join(Clarithromycin_minmax_copy)
col = ['Date of first Clarithromycin Rx', 'Prior Clarithromycin course end date', 'Most recent Clarithromycin course start date', 'Date of last Clarithromycin Rx', 'Multiple Clarithromycin Tx courses', '3rd course of Clarithromycin?', 'Duration of Clarithromycin Rx days', '# of Clarithromycin Rx']
Clarithromycin_minmax = Clarithromycin_minmax[col]
Rifampicin = pd.DataFrame({'Index':rifampicin_EMPI, 'Date':rifampicin_date, 'Rifampicin':rifampicin})
Rifampicin['Date'] = pd.to_datetime(Rifampicin['Date'])
Rifampicin_gb = Rifampicin.groupby('Index')
Rifampicin_min = Rifampicin_gb.agg({'Date':np.min})
Rifampicin_max = Rifampicin_gb.agg({'Date':np.max})
Rifampicin_min = Rifampicin_min.rename(columns={"Date": "Date of first Rifampicin Rx"})
Rifampicin_max = Rifampicin_max.rename(columns={"Date": "Date of last Rifampicin Rx"})
Rifampicin_minmax = Rifampicin_min.join(Rifampicin_max, how='outer')
Rifampicin_minmax['Duration of Rifampicin Rx days'] = ((Rifampicin_minmax['Date of last Rifampicin Rx'] - Rifampicin_minmax['Date of first Rifampicin Rx']).dt.days).abs()
Rifampicin_counts = Rifampicin_gb['Rifampicin'].value_counts()
Rifampicin_counts = pd.DataFrame(Rifampicin_counts)
Rifampicin_counts = Rifampicin_counts.rename(columns={"Rifampicin": "# of Rifampicin Rx"})
Rifampicin_counts = Rifampicin_counts.reset_index()
Rifampicin_counts = Rifampicin_counts.set_index('Index')
Rifampicin_minmax['# of Rifampicin Rx'] = Rifampicin_counts["# of Rifampicin Rx"]
def function_Rifampicin(c):
if c['Duration of Rifampicin Rx days'] >= 274:
return 'Multiple Courses'
else:
return np.nan
Rifampicin_minmax['Multiple Rifampicin Tx courses'] = Rifampicin_minmax.apply(function_Rifampicin, axis=1)
Rifampicin = Rifampicin.set_index('Index')
Rifampicin = Rifampicin.drop('Rifampicin', axis=1)
Rifampicin_ori = Rifampicin
Rifampicin = Rifampicin.join(Rifampicin_max, how='outer')
Rifampicin['Difference'] = ((Rifampicin['Date'] - Rifampicin['Date of last Rifampicin Rx']).dt.days).abs()
Rifampicin_recent = Rifampicin.loc[Rifampicin['Difference'] <= 274]
Rifampicin_recent = Rifampicin_recent.reset_index()
Rifampicin_recent_txcourse = Rifampicin_recent.loc[Rifampicin_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Rifampicin_minmax['Most recent Rifampicin course start date'] = Rifampicin_recent_txcourse['Date']
Rifampicin = Rifampicin.drop('Date of last Rifampicin Rx', axis=1)
Rifampicin['Date of first Rifampicin Rx'] = Rifampicin_minmax['Date of first Rifampicin Rx']
Rifampicin['Difference'] = ((Rifampicin['Date'] - Rifampicin['Date of first Rifampicin Rx']).dt.days)
Rifampicin['Multiple Rifampicin Tx Courses'] = Rifampicin_minmax['Multiple Rifampicin Tx courses']
Rifampicin = Rifampicin.loc[Rifampicin['Multiple Rifampicin Tx Courses'] == 'Multiple Courses']
Rifampicin = Rifampicin.drop('Multiple Rifampicin Tx Courses', axis=1)
Rifampicin_previous = Rifampicin.loc[Rifampicin['Difference'] <= 274]
Rifampicin_previous = Rifampicin_previous.reset_index()
Rifampicin_previous_tx = Rifampicin_previous.loc[Rifampicin_previous.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Rifampicin_minmax['Prior Rifampicin course end date'] = Rifampicin_previous_tx['Date']
Rifampicin_minmax_copy = Rifampicin_ori.join(Rifampicin_minmax)
def function_Rifampicin1(c):
if c['Duration of Rifampicin Rx days'] >= 1460:
if c['Date'] in (c['Prior Rifampicin course end date'], c['Most recent Rifampicin course start date']):
return '3rd course recieved'
else:
return np.nan
Rifampicin_minmax_copy['3rd course of Rifampicin?'] = Rifampicin_minmax_copy.apply(function_Rifampicin1, axis=1)
Rifampicin_minmax_copy = Rifampicin_minmax_copy['3rd course of Rifampicin?']
Rifampicin_minmax_copy = Rifampicin_minmax_copy.dropna().drop_duplicates()
Rifampicin_minmax = Rifampicin_minmax.join(Rifampicin_minmax_copy)
col = ['Date of first Rifampicin Rx', 'Prior Rifampicin course end date', 'Most recent Rifampicin course start date', 'Date of last Rifampicin Rx', 'Multiple Rifampicin Tx courses', '3rd course of Rifampicin?', 'Duration of Rifampicin Rx days', '# of Rifampicin Rx']
Rifampicin_minmax = Rifampicin_minmax[col]
# Rifabutin = pd.DataFrame({'Index':rifabutin_EMPI, 'Date':rifabutin_date, 'Rifabutin':rifabutin})
# Rifabutin['Date'] = pd.to_datetime(Rifabutin['Date'])
# Rifabutin_gb = Rifabutin.groupby('Index')
# Rifabutin_min = Rifabutin_gb.agg({'Date':np.min})
# Rifabutin_max = Rifabutin_gb.agg({'Date':np.max})
# Rifabutin_min = Rifabutin_min.rename(columns={"Date": "Date of first Rifabutin Rx"})
# Rifabutin_max = Rifabutin_max.rename(columns={"Date": "Date of last Rifabutin Rx"})
# Rifabutin_minmax = Rifabutin_min.join(Rifabutin_max, how='outer')
# Rifabutin_minmax['Duration of Rifabutin Rx days'] = ((Rifabutin_minmax['Date of last Rifabutin Rx'] - Rifabutin_minmax['Date of first Rifabutin Rx']).dt.days).abs()
# Rifabutin_counts = Rifabutin_gb['Rifabutin'].value_counts()
# Rifabutin_counts = pd.DataFrame(Rifabutin_counts)
# Rifabutin_counts = Rifabutin_counts.rename(columns={"Rifabutin": "# of Rifabutin Rx"})
# Rifabutin_counts = Rifabutin_counts.reset_index()
# Rifabutin_counts = Rifabutin_counts.set_index('Index')
# Rifabutin_minmax['# of Rifabutin Rx'] = Rifabutin_counts["# of Rifabutin Rx"]
# def function_Rifabutin(c):
# if c['Duration of Rifabutin Rx days'] >= 274:
# return 'Multiple Courses'
# else:
# return np.nan
# Rifabutin_minmax['Multiple Rifabutin Tx courses'] = Rifabutin_minmax.apply(function_Rifabutin, axis=1)
# Rifabutin = Rifabutin.set_index('Index')
# Rifabutin = Rifabutin.drop('Rifabutin', axis=1)
# Rifabutin_ori = Rifabutin
# Rifabutin = Rifabutin.join(Rifabutin_max, how='outer')
# Rifabutin['Difference'] = ((Rifabutin['Date'] - Rifabutin['Date of last Rifabutin Rx']).dt.days).abs()
# Rifabutin_recent = Rifabutin.loc[Rifabutin['Difference'] <= 274]
# Rifabutin_recent = Rifabutin_recent.reset_index()
# Rifabutin_recent_txcourse = Rifabutin_recent.loc[Rifabutin_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
# Rifabutin_minmax['Most recent Rifabutin course start date'] = Rifabutin_recent_txcourse['Date']
# Rifabutin = Rifabutin.drop('Date of last Rifabutin Rx', axis=1)
# Rifabutin['Date of first Rifabutin Rx'] = Rifabutin_minmax['Date of first Rifabutin Rx']
# Rifabutin['Difference'] = ((Rifabutin['Date'] - Rifabutin['Date of first Rifabutin Rx']).dt.days)
# Rifabutin['Multiple Rifabutin Tx Courses'] = Rifabutin_minmax['Multiple Rifabutin Tx courses']
# Rifabutin = Rifabutin.loc[Rifabutin['Multiple Rifabutin Tx Courses'] == 'Multiple Courses']
# Rifabutin = Rifabutin.drop('Multiple Rifabutin Tx Courses', axis=1)
# Rifabutin_previous = Rifabutin.loc[Rifabutin['Difference'] <= 274]
# Rifabutin_previous = Rifabutin_previous.reset_index()
# Rifabutin_previous_tx = Rifabutin_previous.loc[Rifabutin_previous.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
# Rifabutin_minmax['Prior Rifabutin course end date'] = Rifabutin_previous_tx['Date']
# Rifabutin_minmax_copy = Rifabutin_ori.join(Rifabutin_minmax)
# def function_Rifabutin1(c):
# if c['Duration of Rifabutin Rx days'] >= 1460:
# if c['Date'] in (c['Prior Rifabutin course end date'], c['Most recent Rifabutin course start date']):
# return '3rd course recieved'
# else:
# return np.nan
# Rifabutin_minmax_copy['3rd course of Rifabutin?'] = Rifabutin_minmax_copy.apply(function_Rifabutin1, axis=1)
# Rifabutin_minmax_copy = Rifabutin_minmax_copy['3rd course of Rifabutin?']
# Rifabutin_minmax_copy = Rifabutin_minmax_copy.dropna().drop_duplicates()
# Rifabutin_minmax = Rifabutin_minmax.join(Rifabutin_minmax_copy)
# col = ['Date of first Rifabutin Rx', 'Prior Rifabutin course end date', 'Most recent Rifabutin course start date', 'Date of last Rifabutin Rx', 'Multiple Rifabutin Tx courses', '3rd course of Rifabutin?', 'Duration of Rifabutin Rx days', '# of Rifabutin Rx']
# Rifabutin_minmax = Rifabutin_minmax[col]
Bedaqualine = pd.DataFrame({'Index':bedaquiline_EMPI, 'Date':bedaquiline_date, 'Bedaqualine':bedaquiline})
Bedaqualine['Date'] = pd.to_datetime(Bedaqualine['Date'])
Bedaqualine_gb = Bedaqualine.groupby('Index')
Bedaqualine_min = Bedaqualine_gb.agg({'Date':np.min})
Bedaqualine_max = Bedaqualine_gb.agg({'Date':np.max})
Bedaqualine_min = Bedaqualine_min.rename(columns={"Date": "Date of first Bedaqualine Rx"})
Bedaqualine_max = Bedaqualine_max.rename(columns={"Date": "Date of last Bedaqualine Rx"})
Bedaqualine_minmax = Bedaqualine_min.join(Bedaqualine_max, how='outer')
Bedaqualine_minmax['Duration of Bedaqualine Rx days'] = ((Bedaqualine_minmax['Date of last Bedaqualine Rx'] - Bedaqualine_minmax['Date of first Bedaqualine Rx']).dt.days).abs()
Bedaqualine_counts = Bedaqualine_gb['Bedaqualine'].value_counts()
Bedaqualine_counts = pd.DataFrame(Bedaqualine_counts)
Bedaqualine_counts = Bedaqualine_counts.rename(columns={"Bedaqualine": "# of Bedaqualine Rx"})
Bedaqualine_counts = Bedaqualine_counts.reset_index()
Bedaqualine_counts = Bedaqualine_counts.set_index('Index')
Bedaqualine_minmax['# of Bedaqualine Rx'] = Bedaqualine_counts["# of Bedaqualine Rx"]
def function_Bedaqualine(c):
if c['Duration of Bedaqualine Rx days'] >= 274:
return 'Multiple Courses'
else:
return np.nan
Bedaqualine_minmax['Multiple Bedaqualine Tx courses'] = Bedaqualine_minmax.apply(function_Bedaqualine, axis=1)
Bedaqualine = Bedaqualine.set_index('Index')
Bedaqualine = Bedaqualine.drop('Bedaqualine', axis=1)
Bedaqualine_ori = Bedaqualine
Bedaqualine = Bedaqualine.join(Bedaqualine_max, how='outer')
Bedaqualine['Difference'] = ((Bedaqualine['Date'] - Bedaqualine['Date of last Bedaqualine Rx']).dt.days).abs()
Bedaqualine_recent = Bedaqualine.loc[Bedaqualine['Difference'] <= 274]
Bedaqualine_recent = Bedaqualine_recent.reset_index()
Bedaqualine_recent_txcourse = Bedaqualine_recent.loc[Bedaqualine_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Bedaqualine_minmax['Most recent Bedaqualine course start date'] = Bedaqualine_recent_txcourse['Date']
col = ['Date of first Bedaqualine Rx', 'Date of last Bedaqualine Rx', 'Multiple Bedaqualine Tx courses', 'Duration of Bedaqualine Rx days', '# of Bedaqualine Rx']
Bedaqualine_minmax = Bedaqualine_minmax[col]
Isoniazid = pd.DataFrame({'Index':isoniazid_EMPI, 'Date':isoniazid_date, 'Isoniazid':isoniazid})
Isoniazid['Date'] = pd.to_datetime(Isoniazid['Date'])
Isoniazid_gb = Isoniazid.groupby('Index')
Isoniazid_min = Isoniazid_gb.agg({'Date':np.min})
Isoniazid_max = Isoniazid_gb.agg({'Date':np.max})
Isoniazid_min = Isoniazid_min.rename(columns={"Date": "Date of first Isoniazid Rx"})
Isoniazid_max = Isoniazid_max.rename(columns={"Date": "Date of last Isoniazid Rx"})
Isoniazid_minmax = Isoniazid_min.join(Isoniazid_max, how='outer')
Isoniazid_minmax['Duration of Isoniazid Rx days'] = ((Isoniazid_minmax['Date of last Isoniazid Rx'] - Isoniazid_minmax['Date of first Isoniazid Rx']).dt.days).abs()
Isoniazid_counts = Isoniazid_gb['Isoniazid'].value_counts()
Isoniazid_counts = pd.DataFrame(Isoniazid_counts)
Isoniazid_counts = Isoniazid_counts.rename(columns={"Isoniazid": "# of Isoniazid Rx"})
Isoniazid_counts = Isoniazid_counts.reset_index()
Isoniazid_counts = Isoniazid_counts.set_index('Index')
Isoniazid_minmax['# of Isoniazid Rx'] = Isoniazid_counts["# of Isoniazid Rx"]
def function_Isoniazid(c):
if c['Duration of Isoniazid Rx days'] >= 274:
return 'Multiple Courses'
else:
return np.nan
Isoniazid_minmax['Multiple Isoniazid Tx courses'] = Isoniazid_minmax.apply(function_Isoniazid, axis=1)
Isoniazid = Isoniazid.set_index('Index')
Isoniazid = Isoniazid.drop('Isoniazid', axis=1)
Isoniazid_ori = Isoniazid
Isoniazid = Isoniazid.join(Isoniazid_max, how='outer')
Isoniazid['Difference'] = ((Isoniazid['Date'] - Isoniazid['Date of last Isoniazid Rx']).dt.days).abs()
Isoniazid_recent = Isoniazid.loc[Isoniazid['Difference'] <= 274]
Isoniazid_recent = Isoniazid_recent.reset_index()
Isoniazid_recent_txcourse = Isoniazid_recent.loc[Isoniazid_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Isoniazid_minmax['Most recent Isoniazid course start date'] = Isoniazid_recent_txcourse['Date']
Isoniazid = Isoniazid.drop('Date of last Isoniazid Rx', axis=1)
Isoniazid['Date of first Isoniazid Rx'] = Isoniazid_minmax['Date of first Isoniazid Rx']
Isoniazid['Difference'] = ((Isoniazid['Date'] - Isoniazid['Date of first Isoniazid Rx']).dt.days)
Isoniazid['Multiple Isoniazid Tx Courses'] = Isoniazid_minmax['Multiple Isoniazid Tx courses']
Isoniazid = Isoniazid.loc[Isoniazid['Multiple Isoniazid Tx Courses'] == 'Multiple Courses']
Isoniazid = Isoniazid.drop('Multiple Isoniazid Tx Courses', axis=1)
Isoniazid_previous = Isoniazid.loc[Isoniazid['Difference'] <= 274]
Isoniazid_previous = Isoniazid_previous.reset_index()
Isoniazid_previous_tx = Isoniazid_previous.loc[Isoniazid_previous.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Isoniazid_minmax['Prior Isoniazid course end date'] = Isoniazid_previous_tx['Date']
Isoniazid_minmax_copy = Isoniazid_ori.join(Isoniazid_minmax)
def function_Isoniazid1(c):
if c['Duration of Isoniazid Rx days'] >= 1460:
if c['Date'] in (c['Prior Isoniazid course end date'], c['Most recent Isoniazid course start date']):
return '3rd course recieved'
else:
return np.nan
Isoniazid_minmax_copy['3rd course of Isoniazid?'] = Isoniazid_minmax_copy.apply(function_Isoniazid1, axis=1)
Isoniazid_minmax_copy = Isoniazid_minmax_copy['3rd course of Isoniazid?']
Isoniazid_minmax_copy = Isoniazid_minmax_copy.dropna().drop_duplicates()
Isoniazid_minmax = Isoniazid_minmax.join(Isoniazid_minmax_copy)
col = ['Date of first Isoniazid Rx', 'Prior Isoniazid course end date', 'Most recent Isoniazid course start date', 'Date of last Isoniazid Rx', 'Multiple Isoniazid Tx courses', '3rd course of Isoniazid?', 'Duration of Isoniazid Rx days', '# of Isoniazid Rx']
Isoniazid_minmax = Isoniazid_minmax[col]
Clofazimine = pd.DataFrame({'Index':clofazimine_EMPI, 'Date':clofazimine_date, 'Clofazimine':clofazimine})
Clofazimine['Date'] = pd.to_datetime(Clofazimine['Date'])
Clofazimine_gb = Clofazimine.groupby('Index')
Clofazimine_min = Clofazimine_gb.agg({'Date':np.min})
Clofazimine_max = Clofazimine_gb.agg({'Date':np.max})
Clofazimine_min = Clofazimine_min.rename(columns={"Date": "Date of first Clofazimine Rx"})
Clofazimine_max = Clofazimine_max.rename(columns={"Date": "Date of last Clofazimine Rx"})
Clofazimine_minmax = Clofazimine_min.join(Clofazimine_max, how='outer')
Clofazimine_minmax['Duration of Clofazimine Rx days'] = ((Clofazimine_minmax['Date of last Clofazimine Rx'] - Clofazimine_minmax['Date of first Clofazimine Rx']).dt.days).abs()
Clofazimine_counts = Clofazimine_gb['Clofazimine'].value_counts()
Clofazimine_counts = pd.DataFrame(Clofazimine_counts)
Clofazimine_counts = Clofazimine_counts.rename(columns={"Clofazimine": "# of Clofazimine Rx"})
Clofazimine_counts = Clofazimine_counts.reset_index()
Clofazimine_counts = Clofazimine_counts.set_index('Index')
Clofazimine_minmax['# of Clofazimine Rx'] = Clofazimine_counts["# of Clofazimine Rx"]
def function_Clofazimine(c):
if c['Duration of Clofazimine Rx days'] >= 274:
return 'Multiple Courses'
else:
return np.nan
Clofazimine_minmax['Multiple Clofazimine Tx courses'] = Clofazimine_minmax.apply(function_Clofazimine, axis=1)
Clofazimine = Clofazimine.set_index('Index')
Clofazimine = Clofazimine.drop('Clofazimine', axis=1)
Clofazimine_ori = Clofazimine
Clofazimine = Clofazimine.join(Clofazimine_max, how='outer')
Clofazimine['Difference'] = ((Clofazimine['Date'] - Clofazimine['Date of last Clofazimine Rx']).dt.days).abs()
Clofazimine_recent = Clofazimine.loc[Clofazimine['Difference'] <= 274]
Clofazimine_recent = Clofazimine_recent.reset_index()
Clofazimine_recent_txcourse = Clofazimine_recent.loc[Clofazimine_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Clofazimine_minmax['Most recent Clofazimine course start date'] = Clofazimine_recent_txcourse['Date']
col = ['Date of first Clofazimine Rx', 'Date of last Clofazimine Rx', 'Multiple Clofazimine Tx courses', 'Duration of Clofazimine Rx days', '# of Clofazimine Rx']
Clofazimine_minmax = Clofazimine_minmax[col]
Amikacin = pd.DataFrame({'Index':amikacin_EMPI, 'Date':amikacin_date, 'Amikacin':amikacin})
Amikacin['Date'] = pd.to_datetime(Amikacin['Date'])
Amikacin_gb = Amikacin.groupby('Index')
Amikacin_min = Amikacin_gb.agg({'Date':np.min})
Amikacin_max = Amikacin_gb.agg({'Date':np.max})
Amikacin_min = Amikacin_min.rename(columns={"Date": "Date of first Amikacin Rx"})
Amikacin_max = Amikacin_max.rename(columns={"Date": "Date of last Amikacin Rx"})
Amikacin_minmax = Amikacin_min.join(Amikacin_max, how='outer')
Amikacin_minmax['Duration of Amikacin Rx days'] = ((Amikacin_minmax['Date of last Amikacin Rx'] - Amikacin_minmax['Date of first Amikacin Rx']).dt.days).abs()
Amikacin_counts = Amikacin_gb['Amikacin'].value_counts()
Amikacin_counts = pd.DataFrame(Amikacin_counts)
Amikacin_counts = Amikacin_counts.rename(columns={"Amikacin": "# of Amikacin Rx"})
Amikacin_counts = Amikacin_counts.reset_index()
Amikacin_counts = Amikacin_counts.set_index('Index')
Amikacin_minmax['# of Amikacin Rx'] = Amikacin_counts["# of Amikacin Rx"]
def function_Amikacin(c):
if c['Duration of Amikacin Rx days'] >= 274:
return 'Multiple Courses'
else:
return np.nan
Amikacin_minmax['Multiple Amikacin Tx courses'] = Amikacin_minmax.apply(function_Amikacin, axis=1)
Amikacin = Amikacin.set_index('Index')
Amikacin = Amikacin.drop('Amikacin', axis=1)
Amikacin_ori = Amikacin
Amikacin = Amikacin.join(Amikacin_max, how='outer')
Amikacin['Difference'] = ((Amikacin['Date'] - Amikacin['Date of last Amikacin Rx']).dt.days).abs()
Amikacin_recent = Amikacin.loc[Amikacin['Difference'] <= 274]
Amikacin_recent = Amikacin_recent.reset_index()
Amikacin_recent_txcourse = Amikacin_recent.loc[Amikacin_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Amikacin_minmax['Most recent Amikacin course start date'] = Amikacin_recent_txcourse['Date']
Amikacin = Amikacin.drop('Date of last Amikacin Rx', axis=1)
Amikacin['Date of first Amikacin Rx'] = Amikacin_minmax['Date of first Amikacin Rx']
Amikacin['Difference'] = ((Amikacin['Date'] - Amikacin['Date of first Amikacin Rx']).dt.days)
Amikacin['Multiple Amikacin Tx Courses'] = Amikacin_minmax['Multiple Amikacin Tx courses']
Amikacin = Amikacin.loc[Amikacin['Multiple Amikacin Tx Courses'] == 'Multiple Courses']
Amikacin = Amikacin.drop('Multiple Amikacin Tx Courses', axis=1)
Amikacin_previous = Amikacin.loc[Amikacin['Difference'] <= 274]
Amikacin_previous = Amikacin_previous.reset_index()
Amikacin_previous_tx = Amikacin_previous.loc[Amikacin_previous.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Amikacin_minmax['Prior Amikacin course end date'] = Amikacin_previous_tx['Date']
Amikacin_minmax_copy = Amikacin_ori.join(Amikacin_minmax)
def function_Amikacin1(c):
if c['Duration of Amikacin Rx days'] >= 1460:
if c['Date'] in (c['Prior Amikacin course end date'], c['Most recent Amikacin course start date']):
return '3rd course recieved'
else:
return np.nan
Amikacin_minmax_copy['3rd course of Amikacin?'] = Amikacin_minmax_copy.apply(function_Amikacin1, axis=1)
Amikacin_minmax_copy = Amikacin_minmax_copy['3rd course of Amikacin?']
Amikacin_minmax_copy = Amikacin_minmax_copy.dropna().drop_duplicates()
Amikacin_minmax = Amikacin_minmax.join(Amikacin_minmax_copy)
col = ['Date of first Amikacin Rx', 'Prior Amikacin course end date', 'Most recent Amikacin course start date', 'Date of last Amikacin Rx', 'Multiple Amikacin Tx courses', '3rd course of Amikacin?', 'Duration of Amikacin Rx days', '# of Amikacin Rx']
Amikacin_minmax = Amikacin_minmax[col]
Azithromycin = pd.DataFrame({'Index':azithromycin_EMPI, 'Date':azithromycin_date, 'Azithromycin':azithromycin})
Azithromycin['Date'] = pd.to_datetime(Azithromycin['Date'])
Azithromycin_gb = Azithromycin.groupby('Index')
Azithromycin_min = Azithromycin_gb.agg({'Date':np.min})
Azithromycin_max = Azithromycin_gb.agg({'Date':np.max})
Azithromycin_min = Azithromycin_min.rename(columns={"Date": "Date of first Azithromycin Rx"})
Azithromycin_max = Azithromycin_max.rename(columns={"Date": "Date of last Azithromycin Rx"})
Azithromycin_minmax = Azithromycin_min.join(Azithromycin_max, how='outer')
Azithromycin_minmax['Duration of Azithromycin Rx days'] = ((Azithromycin_minmax['Date of last Azithromycin Rx'] - Azithromycin_minmax['Date of first Azithromycin Rx']).dt.days).abs()
Azithromycin_counts = Azithromycin_gb['Azithromycin'].value_counts()
Azithromycin_counts = pd.DataFrame(Azithromycin_counts)
Azithromycin_counts = Azithromycin_counts.rename(columns={"Azithromycin": "# of Azithromycin Rx"})
Azithromycin_counts = Azithromycin_counts.reset_index()
Azithromycin_counts = Azithromycin_counts.set_index('Index')
Azithromycin_minmax['# of Azithromycin Rx'] = Azithromycin_counts["# of Azithromycin Rx"]
def function_Azithromycin(c):
if c['Duration of Azithromycin Rx days'] >= 274:
return 'Multiple Courses'
else:
return np.nan
Azithromycin_minmax['Multiple Azithromycin Tx courses'] = Azithromycin_minmax.apply(function_Azithromycin, axis=1)
Azithromycin = Azithromycin.set_index('Index')
Azithromycin = Azithromycin.drop('Azithromycin', axis=1)
Azithromycin_ori = Azithromycin
Azithromycin = Azithromycin.join(Azithromycin_max, how='outer')
Azithromycin['Difference'] = ((Azithromycin['Date'] - Azithromycin['Date of last Azithromycin Rx']).dt.days).abs()
Azithromycin_recent = Azithromycin.loc[Azithromycin['Difference'] <= 274]
Azithromycin_recent = Azithromycin_recent.reset_index()
Azithromycin_recent_txcourse = Azithromycin_recent.loc[Azithromycin_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Azithromycin_minmax['Most recent Azithromycin course start date'] = Azithromycin_recent_txcourse['Date']
Azithromycin = Azithromycin.drop('Date of last Azithromycin Rx', axis=1)
Azithromycin['Date of first Azithromycin Rx'] = Azithromycin_minmax['Date of first Azithromycin Rx']
Azithromycin['Difference'] = ((Azithromycin['Date'] - Azithromycin['Date of first Azithromycin Rx']).dt.days)
Azithromycin['Multiple Azithromycin Tx Courses'] = Azithromycin_minmax['Multiple Azithromycin Tx courses']
Azithromycin = Azithromycin.loc[Azithromycin['Multiple Azithromycin Tx Courses'] == 'Multiple Courses']
Azithromycin = Azithromycin.drop('Multiple Azithromycin Tx Courses', axis=1)
Azithromycin_previous = Azithromycin.loc[Azithromycin['Difference'] <= 274]
Azithromycin_previous = Azithromycin_previous.reset_index()
Azithromycin_previous_tx = Azithromycin_previous.loc[Azithromycin_previous.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Azithromycin_minmax['Prior Azithromycin course end date'] = Azithromycin_previous_tx['Date']
Azithromycin_minmax_copy = Azithromycin_ori.join(Azithromycin_minmax)
def function_Azithromycin1(c):
if c['Duration of Azithromycin Rx days'] >= 1460:
if c['Date'] in (c['Prior Azithromycin course end date'], c['Most recent Azithromycin course start date']):
return '3rd course recieved'
else:
return np.nan
Azithromycin_minmax_copy['3rd course of Azithromycin?'] = Azithromycin_minmax_copy.apply(function_Azithromycin1, axis=1)
Azithromycin_minmax_copy = Azithromycin_minmax_copy['3rd course of Azithromycin?']
Azithromycin_minmax_copy = Azithromycin_minmax_copy.dropna().drop_duplicates()
Azithromycin_minmax = Azithromycin_minmax.join(Azithromycin_minmax_copy)
col = ['Date of first Azithromycin Rx', 'Prior Azithromycin course end date', 'Most recent Azithromycin course start date', 'Date of last Azithromycin Rx', 'Multiple Azithromycin Tx courses', '3rd course of Azithromycin?', 'Duration of Azithromycin Rx days', '# of Azithromycin Rx']
Azithromycin_minmax = Azithromycin_minmax[col]
Moxifloxacin = pd.DataFrame({'Index':moxifloxacin_EMPI, 'Date':moxifloxacin_date, 'Moxifloxacin':moxifloxacin})
Moxifloxacin['Date'] = pd.to_datetime(Moxifloxacin['Date'])
Moxifloxacin_gb = Moxifloxacin.groupby('Index')
Moxifloxacin_min = Moxifloxacin_gb.agg({'Date':np.min})
Moxifloxacin_max = Moxifloxacin_gb.agg({'Date':np.max})
Moxifloxacin_min = Moxifloxacin_min.rename(columns={"Date": "Date of first Moxifloxacin Rx"})
Moxifloxacin_max = Moxifloxacin_max.rename(columns={"Date": "Date of last Moxifloxacin Rx"})
Moxifloxacin_minmax = Moxifloxacin_min.join(Moxifloxacin_max, how='outer')
Moxifloxacin_minmax['Duration of Moxifloxacin Rx days'] = ((Moxifloxacin_minmax['Date of last Moxifloxacin Rx'] - Moxifloxacin_minmax['Date of first Moxifloxacin Rx']).dt.days).abs()
Moxifloxacin_minmax
Moxifloxacin_counts = Moxifloxacin_gb['Moxifloxacin'].value_counts()
Moxifloxacin_counts = pd.DataFrame(Moxifloxacin_counts)
Moxifloxacin_counts = Moxifloxacin_counts.rename(columns={"Moxifloxacin": "# of Moxifloxacin Rx"})
Moxifloxacin_counts = Moxifloxacin_counts.reset_index()
Moxifloxacin_counts = Moxifloxacin_counts.set_index('Index')
Moxifloxacin_minmax['# of Moxifloxacin Rx'] = Moxifloxacin_counts["# of Moxifloxacin Rx"]
def function_Moxifloxacin(c):
if c['Duration of Moxifloxacin Rx days'] >= 274:
return 'Multiple Courses'
else:
return np.nan
Moxifloxacin_minmax['Multiple Moxifloxacin Tx courses'] = Moxifloxacin_minmax.apply(function_Moxifloxacin, axis=1)
Moxifloxacin = Moxifloxacin.set_index('Index')
Moxifloxacin = Moxifloxacin.drop('Moxifloxacin', axis=1)
Moxifloxacin_ori = Moxifloxacin
Moxifloxacin = Moxifloxacin.join(Moxifloxacin_max, how='outer')
Moxifloxacin['Difference'] = ((Moxifloxacin['Date'] - Moxifloxacin['Date of last Moxifloxacin Rx']).dt.days).abs()
Moxifloxacin_recent = Moxifloxacin.loc[Moxifloxacin['Difference'] <= 274]
Moxifloxacin_recent = Moxifloxacin_recent.reset_index()
Moxifloxacin_recent_txcourse = Moxifloxacin_recent.loc[Moxifloxacin_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Moxifloxacin_minmax['Most recent Moxifloxacin course start date'] = Moxifloxacin_recent_txcourse['Date']
Moxifloxacin = Moxifloxacin.drop('Date of last Moxifloxacin Rx', axis=1)
Moxifloxacin['Date of first Moxifloxacin Rx'] = Moxifloxacin_minmax['Date of first Moxifloxacin Rx']
Moxifloxacin['Difference'] = ((Moxifloxacin['Date'] - Moxifloxacin['Date of first Moxifloxacin Rx']).dt.days)
Moxifloxacin['Multiple Moxifloxacin Tx Courses'] = Moxifloxacin_minmax['Multiple Moxifloxacin Tx courses']
Moxifloxacin = Moxifloxacin.loc[Moxifloxacin['Multiple Moxifloxacin Tx Courses'] == 'Multiple Courses']
Moxifloxacin = Moxifloxacin.drop('Multiple Moxifloxacin Tx Courses', axis=1)
Moxifloxacin_previous = Moxifloxacin.loc[Moxifloxacin['Difference'] <= 274]
Moxifloxacin_previous = Moxifloxacin_previous.reset_index()
Moxifloxacin_previous_tx = Moxifloxacin_previous.loc[Moxifloxacin_previous.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Moxifloxacin_minmax['Prior Moxifloxacin course end date'] = Moxifloxacin_previous_tx['Date']
Moxifloxacin_minmax_copy = Moxifloxacin_ori.join(Moxifloxacin_minmax)
def function_Moxifloxacin1(c):
if c['Duration of Moxifloxacin Rx days'] >= 1460:
if c['Date'] in (c['Prior Moxifloxacin course end date'], c['Most recent Moxifloxacin course start date']):
return '3rd course recieved'
else:
return np.nan
Moxifloxacin_minmax_copy['3rd course of Moxifloxacin?'] = Moxifloxacin_minmax_copy.apply(function_Moxifloxacin1, axis=1)
Moxifloxacin_minmax_copy = Moxifloxacin_minmax_copy['3rd course of Moxifloxacin?']
Moxifloxacin_minmax_copy = Moxifloxacin_minmax_copy.dropna().drop_duplicates()
Moxifloxacin_minmax = Moxifloxacin_minmax.join(Moxifloxacin_minmax_copy)
col = ['Date of first Moxifloxacin Rx', 'Prior Moxifloxacin course end date', 'Most recent Moxifloxacin course start date', 'Date of last Moxifloxacin Rx', 'Multiple Moxifloxacin Tx courses', '3rd course of Moxifloxacin?', 'Duration of Moxifloxacin Rx days', '# of Moxifloxacin Rx']
Moxifloxacin_minmax = Moxifloxacin_minmax[col]
Levofloxacin = pd.DataFrame({'Index':levofloxacin_EMPI, 'Date':levofloxacin_date, 'Levofloxacin':levofloxacin})
Levofloxacin['Date'] = pd.to_datetime(Levofloxacin['Date'])
Levofloxacin_gb = Levofloxacin.groupby('Index')
Levofloxacin_min = Levofloxacin_gb.agg({'Date':np.min})
Levofloxacin_max = Levofloxacin_gb.agg({'Date':np.max})
Levofloxacin_min = Levofloxacin_min.rename(columns={"Date": "Date of first Levofloxacin Rx"})
Levofloxacin_max = Levofloxacin_max.rename(columns={"Date": "Date of last Levofloxacin Rx"})
Levofloxacin_minmax = Levofloxacin_min.join(Levofloxacin_max, how='outer')
Levofloxacin_minmax['Duration of Levofloxacin Rx days'] = ((Levofloxacin_minmax['Date of last Levofloxacin Rx'] - Levofloxacin_minmax['Date of first Levofloxacin Rx']).dt.days).abs()
Levofloxacin_counts = Levofloxacin_gb['Levofloxacin'].value_counts()
Levofloxacin_counts = pd.DataFrame(Levofloxacin_counts)
Levofloxacin_counts = Levofloxacin_counts.rename(columns={"Levofloxacin": "# of Levofloxacin Rx"})
Levofloxacin_counts = Levofloxacin_counts.reset_index()
Levofloxacin_counts = Levofloxacin_counts.set_index('Index')
Levofloxacin_minmax['# of Levofloxacin Rx'] = Levofloxacin_counts["# of Levofloxacin Rx"]
def function_Levofloxacin(c):
if c['Duration of Levofloxacin Rx days'] >= 274:
return 'Multiple Courses'
else:
return np.nan
Levofloxacin_minmax['Multiple Levofloxacin Tx courses'] = Levofloxacin_minmax.apply(function_Levofloxacin, axis=1)
Levofloxacin = Levofloxacin.set_index('Index')
Levofloxacin = Levofloxacin.drop('Levofloxacin', axis=1)
Levofloxacin_ori = Levofloxacin
Levofloxacin = Levofloxacin.join(Levofloxacin_max, how='outer')
Levofloxacin['Difference'] = ((Levofloxacin['Date'] - Levofloxacin['Date of last Levofloxacin Rx']).dt.days).abs()
Levofloxacin_recent = Levofloxacin.loc[Levofloxacin['Difference'] <= 274]
Levofloxacin_recent = Levofloxacin_recent.reset_index()
Levofloxacin_recent_txcourse = Levofloxacin_recent.loc[Levofloxacin_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Levofloxacin_minmax['Most recent Levofloxacin course start date'] = Levofloxacin_recent_txcourse['Date']
Levofloxacin = Levofloxacin.drop('Date of last Levofloxacin Rx', axis=1)
Levofloxacin['Date of first Levofloxacin Rx'] = Levofloxacin_minmax['Date of first Levofloxacin Rx']
Levofloxacin['Difference'] = ((Levofloxacin['Date'] - Levofloxacin['Date of first Levofloxacin Rx']).dt.days)
Levofloxacin['Multiple Levofloxacin Tx Courses'] = Levofloxacin_minmax['Multiple Levofloxacin Tx courses']
Levofloxacin = Levofloxacin.loc[Levofloxacin['Multiple Levofloxacin Tx Courses'] == 'Multiple Courses']
Levofloxacin = Levofloxacin.drop('Multiple Levofloxacin Tx Courses', axis=1)
Levofloxacin_previous = Levofloxacin.loc[Levofloxacin['Difference'] <= 274]
Levofloxacin_previous = Levofloxacin_previous.reset_index()
Levofloxacin_previous_tx = Levofloxacin_previous.loc[Levofloxacin_previous.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Levofloxacin_minmax['Prior Levofloxacin course end date'] = Levofloxacin_previous_tx['Date']
Levofloxacin_minmax_copy = Levofloxacin_ori.join(Levofloxacin_minmax)
def function_Levofloxacin1(c):
if c['Duration of Levofloxacin Rx days'] >= 1460:
if c['Date'] in (c['Prior Levofloxacin course end date'], c['Most recent Levofloxacin course start date']):
return '3rd course recieved'
else:
return np.nan
Levofloxacin_minmax_copy['3rd course of Levofloxacin?'] = Levofloxacin_minmax_copy.apply(function_Levofloxacin1, axis=1)
Levofloxacin_minmax_copy = Levofloxacin_minmax_copy['3rd course of Levofloxacin?']
Levofloxacin_minmax_copy = Levofloxacin_minmax_copy.dropna().drop_duplicates()
Levofloxacin_minmax = Levofloxacin_minmax.join(Levofloxacin_minmax_copy)
col = ['Date of first Levofloxacin Rx', 'Prior Levofloxacin course end date', 'Most recent Levofloxacin course start date', 'Date of last Levofloxacin Rx', 'Multiple Levofloxacin Tx courses', '3rd course of Levofloxacin?', 'Duration of Levofloxacin Rx days', '# of Levofloxacin Rx']
Levofloxacin_minmax = Levofloxacin_minmax[col]
Tobramycin = pd.DataFrame({'Index':tobramycin_EMPI, 'Date':tobramycin_date, 'Tobramycin':tobramycin})
Tobramycin['Date'] = pd.to_datetime(Tobramycin['Date'])
Tobramycin_gb = Tobramycin.groupby('Index')
Tobramycin_min = Tobramycin_gb.agg({'Date':np.min})
Tobramycin_max = Tobramycin_gb.agg({'Date':np.max})
Tobramycin_min = Tobramycin_min.rename(columns={"Date": "Date of first Tobramycin Rx"})
Tobramycin_max = Tobramycin_max.rename(columns={"Date": "Date of last Tobramycin Rx"})
Tobramycin_minmax = Tobramycin_min.join(Tobramycin_max, how='outer')
Tobramycin_minmax['Duration of Tobramycin Rx days'] = ((Tobramycin_minmax['Date of last Tobramycin Rx'] - Tobramycin_minmax['Date of first Tobramycin Rx']).dt.days).abs()
Tobramycin_counts = Tobramycin_gb['Tobramycin'].value_counts()
Tobramycin_counts = pd.DataFrame(Tobramycin_counts)
Tobramycin_counts = Tobramycin_counts.rename(columns={"Tobramycin": "# of Tobramycin Rx"})
Tobramycin_counts = Tobramycin_counts.reset_index()
Tobramycin_counts = Tobramycin_counts.set_index('Index')
Tobramycin_minmax['# of Tobramycin Rx'] = Tobramycin_counts["# of Tobramycin Rx"]
def function_Tobramycin(c):
if c['Duration of Tobramycin Rx days'] >= 274:
return 'Multiple Courses'
else:
return np.nan
Tobramycin_minmax['Multiple Tobramycin Tx courses'] = Tobramycin_minmax.apply(function_Tobramycin, axis=1)
Tobramycin = Tobramycin.set_index('Index')
Tobramycin = Tobramycin.drop('Tobramycin', axis=1)
Tobramycin_ori = Tobramycin
Tobramycin = Tobramycin.join(Tobramycin_max, how='outer')
Tobramycin['Difference'] = ((Tobramycin['Date'] - Tobramycin['Date of last Tobramycin Rx']).dt.days).abs()
Tobramycin_recent = Tobramycin.loc[Tobramycin['Difference'] <= 274]
Tobramycin_recent = Tobramycin_recent.reset_index()
Tobramycin_recent_txcourse = Tobramycin_recent.loc[Tobramycin_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Tobramycin_minmax['Most recent Tobramycin course start date'] = Tobramycin_recent_txcourse['Date']
Tobramycin = Tobramycin.drop('Date of last Tobramycin Rx', axis=1)
Tobramycin['Date of first Tobramycin Rx'] = Tobramycin_minmax['Date of first Tobramycin Rx']
Tobramycin['Difference'] = ((Tobramycin['Date'] - Tobramycin['Date of first Tobramycin Rx']).dt.days)
Tobramycin['Multiple Tobramycin Tx Courses'] = Tobramycin_minmax['Multiple Tobramycin Tx courses']
Tobramycin = Tobramycin.loc[Tobramycin['Multiple Tobramycin Tx Courses'] == 'Multiple Courses']
Tobramycin = Tobramycin.drop('Multiple Tobramycin Tx Courses', axis=1)
Tobramycin_previous = Tobramycin.loc[Tobramycin['Difference'] <= 274]
Tobramycin_previous = Tobramycin_previous.reset_index()
Tobramycin_previous_tx = Tobramycin_previous.loc[Tobramycin_previous.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Tobramycin_minmax['Prior Tobramycin course end date'] = Tobramycin_previous_tx['Date']
Tobramycin_minmax_copy = Tobramycin_ori.join(Tobramycin_minmax)
def function_Tobramycin1(c):
if c['Duration of Tobramycin Rx days'] >= 1460:
if c['Date'] in (c['Prior Tobramycin course end date'], c['Most recent Tobramycin course start date']):
return '3rd course recieved'
else:
return np.nan
Tobramycin_minmax_copy['3rd course of Tobramycin?'] = Tobramycin_minmax_copy.apply(function_Tobramycin1, axis=1)
Tobramycin_minmax_copy = Tobramycin_minmax_copy['3rd course of Tobramycin?']
Tobramycin_minmax_copy = Tobramycin_minmax_copy.dropna().drop_duplicates()
Tobramycin_minmax = Tobramycin_minmax.join(Tobramycin_minmax_copy)
col = ['Date of first Tobramycin Rx', 'Prior Tobramycin course end date', 'Most recent Tobramycin course start date', 'Date of last Tobramycin Rx', 'Multiple Tobramycin Tx courses', '3rd course of Tobramycin?', 'Duration of Tobramycin Rx days', '# of Tobramycin Rx']
Tobramycin_minmax = Tobramycin_minmax[col]
Gentamicin = pd.DataFrame({'Index':gentamicin_EMPI, 'Date':gentamicin_date, 'Gentamicin':gentamicin})
Gentamicin['Date'] = pd.to_datetime(Gentamicin['Date'])
Gentamicin_gb = Gentamicin.groupby('Index')
Gentamicin_min = Gentamicin_gb.agg({'Date':np.min})
Gentamicin_max = Gentamicin_gb.agg({'Date':np.max})
Gentamicin_min = Gentamicin_min.rename(columns={"Date": "Date of first Gentamicin Rx"})
Gentamicin_max = Gentamicin_max.rename(columns={"Date": "Date of last Gentamicin Rx"})
Gentamicin_minmax = Gentamicin_min.join(Gentamicin_max, how='outer')
Gentamicin_minmax['Duration of Gentamicin Rx days'] = ((Gentamicin_minmax['Date of last Gentamicin Rx'] - Gentamicin_minmax['Date of first Gentamicin Rx']).dt.days).abs()
Gentamicin_counts = Gentamicin_gb['Gentamicin'].value_counts()
Gentamicin_counts = pd.DataFrame(Gentamicin_counts)
Gentamicin_counts = Gentamicin_counts.rename(columns={"Gentamicin": "# of Gentamicin Rx"})
Gentamicin_counts = Gentamicin_counts.reset_index()
Gentamicin_counts = Gentamicin_counts.set_index('Index')
Gentamicin_minmax['# of Gentamicin Rx'] = Gentamicin_counts["# of Gentamicin Rx"]
def function_Gentamicin(c):
if c['Duration of Gentamicin Rx days'] >= 274:
return 'Multiple Courses'
else:
return np.nan
Gentamicin_minmax['Multiple Gentamicin Tx courses'] = Gentamicin_minmax.apply(function_Gentamicin, axis=1)
Gentamicin = Gentamicin.set_index('Index')
Gentamicin = Gentamicin.drop('Gentamicin', axis=1)
Gentamicin_ori = Gentamicin
Gentamicin = Gentamicin.join(Gentamicin_max, how='outer')
Gentamicin['Difference'] = ((Gentamicin['Date'] - Gentamicin['Date of last Gentamicin Rx']).dt.days).abs()
Gentamicin_recent = Gentamicin.loc[Gentamicin['Difference'] <= 274]
Gentamicin_recent = Gentamicin_recent.reset_index()
Gentamicin_recent_txcourse = Gentamicin_recent.loc[Gentamicin_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Gentamicin_minmax['Most recent Gentamicin course start date'] = Gentamicin_recent_txcourse['Date']
Gentamicin = Gentamicin.drop('Date of last Gentamicin Rx', axis=1)
Gentamicin['Date of first Gentamicin Rx'] = Gentamicin_minmax['Date of first Gentamicin Rx']
Gentamicin['Difference'] = ((Gentamicin['Date'] - Gentamicin['Date of first Gentamicin Rx']).dt.days)
Gentamicin['Multiple Gentamicin Tx Courses'] = Gentamicin_minmax['Multiple Gentamicin Tx courses']
Gentamicin = Gentamicin.loc[Gentamicin['Multiple Gentamicin Tx Courses'] == 'Multiple Courses']
Gentamicin = Gentamicin.drop('Multiple Gentamicin Tx Courses', axis=1)
Gentamicin_previous = Gentamicin.loc[Gentamicin['Difference'] <= 274]
Gentamicin_previous = Gentamicin_previous.reset_index()
Gentamicin_previous_tx = Gentamicin_previous.loc[Gentamicin_previous.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Gentamicin_minmax['Prior Gentamicin course end date'] = Gentamicin_previous_tx['Date']
Gentamicin_minmax_copy = Gentamicin_ori.join(Gentamicin_minmax)
def function_Gentamicin1(c):
if c['Duration of Gentamicin Rx days'] >= 1460:
if c['Date'] in (c['Prior Gentamicin course end date'], c['Most recent Gentamicin course start date']):
return '3rd course recieved'
else:
return np.nan
Gentamicin_minmax_copy['3rd course of Gentamicin?'] = Gentamicin_minmax_copy.apply(function_Gentamicin1, axis=1)
Gentamicin_minmax_copy = Gentamicin_minmax_copy['3rd course of Gentamicin?']
Gentamicin_minmax_copy = Gentamicin_minmax_copy.dropna().drop_duplicates()
Gentamicin_minmax = Gentamicin_minmax.join(Gentamicin_minmax_copy)
col = ['Date of first Gentamicin Rx', 'Prior Gentamicin course end date', 'Most recent Gentamicin course start date', 'Date of last Gentamicin Rx', 'Multiple Gentamicin Tx courses', '3rd course of Gentamicin?', 'Duration of Gentamicin Rx days', '# of Gentamicin Rx']
Gentamicin_minmax = Gentamicin_minmax[col]
Linezolid = pd.DataFrame({'Index':linezolid_EMPI, 'Date':linezolid_date, 'Linezolid':linezolid})
Linezolid['Date'] = pd.to_datetime(Linezolid['Date'])
Linezolid_gb = Linezolid.groupby('Index')
Linezolid_min = Linezolid_gb.agg({'Date':np.min})
Linezolid_max = Linezolid_gb.agg({'Date':np.max})
Linezolid_min = Linezolid_min.rename(columns={"Date": "Date of first Linezolid Rx"})
Linezolid_max = Linezolid_max.rename(columns={"Date": "Date of last Linezolid Rx"})
Linezolid_minmax = Linezolid_min.join(Linezolid_max, how='outer')
Linezolid_minmax['Duration of Linezolid Rx days'] = ((Linezolid_minmax['Date of last Linezolid Rx'] - Linezolid_minmax['Date of first Linezolid Rx']).dt.days).abs()
Linezolid_counts = Linezolid_gb['Linezolid'].value_counts()
Linezolid_counts = pd.DataFrame(Linezolid_counts)
Linezolid_counts = Linezolid_counts.rename(columns={"Linezolid": "# of Linezolid Rx"})
Linezolid_counts = Linezolid_counts.reset_index()
Linezolid_counts = Linezolid_counts.set_index('Index')
Linezolid_minmax['# of Linezolid Rx'] = Linezolid_counts["# of Linezolid Rx"]
def function_Linezolid(c):
if c['Duration of Linezolid Rx days'] >= 274:
return 'Multiple Courses'
else:
return np.nan
Linezolid_minmax['Multiple Linezolid Tx courses'] = Linezolid_minmax.apply(function_Linezolid, axis=1)
Linezolid = Linezolid.set_index('Index')
Linezolid = Linezolid.drop('Linezolid', axis=1)
Linezolid_ori = Linezolid
Linezolid = Linezolid.join(Linezolid_max, how='outer')
Linezolid['Difference'] = ((Linezolid['Date'] - Linezolid['Date of last Linezolid Rx']).dt.days).abs()
Linezolid_recent = Linezolid.loc[Linezolid['Difference'] <= 274]
Linezolid_recent = Linezolid_recent.reset_index()
Linezolid_recent_txcourse = Linezolid_recent.loc[Linezolid_recent.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Linezolid_minmax['Most recent Linezolid course start date'] = Linezolid_recent_txcourse['Date']
Linezolid = Linezolid.drop('Date of last Linezolid Rx', axis=1)
Linezolid['Date of first Linezolid Rx'] = Linezolid_minmax['Date of first Linezolid Rx']
Linezolid['Difference'] = ((Linezolid['Date'] - Linezolid['Date of first Linezolid Rx']).dt.days)
Linezolid['Multiple Linezolid Tx Courses'] = Linezolid_minmax['Multiple Linezolid Tx courses']
Linezolid = Linezolid.loc[Linezolid['Multiple Linezolid Tx Courses'] == 'Multiple Courses']
Linezolid = Linezolid.drop('Multiple Linezolid Tx Courses', axis=1)
Linezolid_previous = Linezolid.loc[Linezolid['Difference'] <= 274]
Linezolid_previous = Linezolid_previous.reset_index()
Linezolid_previous_tx = Linezolid_previous.loc[Linezolid_previous.groupby(['Index'])['Difference'].idxmax()].set_index('Index')
Linezolid_minmax['Prior Linezolid course end date'] = Linezolid_previous_tx['Date']
Linezolid_minmax_copy = Linezolid_ori.join(Linezolid_minmax)
def function_Linezolid1(c):
if c['Duration of Linezolid Rx days'] >= 1460:
if c['Date'] in (c['Prior Linezolid course end date'], c['Most recent Linezolid course start date']):
return '3rd course recieved'
else:
return np.nan
Linezolid_minmax_copy['3rd course of Linezolid?'] = Linezolid_minmax_copy.apply(function_Linezolid1, axis=1)
Linezolid_minmax_copy = Linezolid_minmax_copy['3rd course of Linezolid?']
Linezolid_minmax_copy = Linezolid_minmax_copy.dropna().drop_duplicates()
Linezolid_minmax = Linezolid_minmax.join(Linezolid_minmax_copy)
col = ['Date of first Linezolid Rx', 'Prior Linezolid course end date', 'Most recent Linezolid course start date', 'Date of last Linezolid Rx', 'Multiple Linezolid Tx courses', '3rd course of Linezolid?', 'Duration of Linezolid Rx days', '# of Linezolid Rx']
Linezolid_minmax = Linezolid_minmax[col]