-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
174 lines (139 loc) · 5.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import time
from tqdm import tqdm
import torch
import math
from torch.utils.data import DataLoader
from torch.nn import DataParallel
from nets.attention_model import set_decode_type
from utils.log_utils import log_values
from utils import move_to
def get_inner_model(model):
return model.module if isinstance(model, DataParallel) else model
def validate(model, dataset, opts):
# Validate
print('Validating...')
# multi batch
cost = rollout(model, dataset, opts)
avg_cost = cost.mean()
print('Validation overall avg_cost: {} +- {}'.format(
avg_cost, torch.std(cost) / math.sqrt(len(cost))))
return avg_cost
def rollout(model, dataset, opts):
# Put in greedy evaluation mode!
set_decode_type(model, "greedy")
model.eval()
def eval_model_bat(bat):
# do not need backpropogation
with torch.no_grad():
cost, _ = model(move_to(bat, opts.device))
return cost.data.cpu()
# tqdm is a function to show the progress bar
return torch.cat([
eval_model_bat(bat)
for bat
in tqdm(DataLoader(dataset, batch_size=opts.eval_batch_size), disable=opts.no_progress_bar)
], 0)
def clip_grad_norms(param_groups, max_norm=math.inf):
"""
Clips the norms for all param groups to max_norm and returns gradient norms before clipping
:param optimizer:
:param max_norm:
:param gradient_norms_log:
:return: grad_norms, clipped_grad_norms: list with (clipped) gradient norms per group
"""
grad_norms = [
torch.nn.utils.clip_grad_norm_(
group['params'],
max_norm if max_norm > 0 else math.inf, # Inf so no clipping but still call to calc
norm_type=2
)
for group in param_groups
]
grad_norms_clipped = [min(g_norm, max_norm) for g_norm in grad_norms] if max_norm > 0 else grad_norms
return grad_norms, grad_norms_clipped
def train_epoch(model, optimizer, baseline, lr_scheduler, epoch, val_dataset, problem, tb_logger, opts):
print("Start train epoch {}, lr={} for run {}".format(epoch, optimizer.param_groups[0]['lr'], opts.run_name))
step = epoch * (opts.epoch_size // opts.batch_size)
start_time = time.time()
lr_scheduler.step(epoch)
if not opts.no_tensorboard: # need tensorboard
tb_logger.log_value('learnrate_pg0', optimizer.param_groups[0]['lr'], step)
# Generate new training data for each epoch
training_dataset = baseline.wrap_dataset(problem.make_dataset(
size=opts.graph_size,
veh_num=opts.veh_num,
num_samples=opts.epoch_size,
distribution=opts.data_distribution)) # data, baseline (cost of data)
training_dataloader = DataLoader(training_dataset, batch_size=opts.batch_size, num_workers=0)
# Put model in train mode!
model.train()
set_decode_type(model, "sampling")
for batch_id, batch in enumerate(tqdm(training_dataloader, disable=opts.no_progress_bar)):
train_batch(
model,
optimizer,
baseline,
epoch,
batch_id,
step,
batch,
tb_logger,
opts
)
step += 1
epoch_duration = time.time() - start_time
print("Finished epoch {}, took {} s".format(epoch, time.strftime('%H:%M:%S', time.gmtime(epoch_duration))))
# save results every checkpoint_epoches, saving memory
if (opts.checkpoint_epochs != 0 and epoch % opts.checkpoint_epochs == 0) or epoch == opts.n_epochs - 1:
print('Saving model and state...')
torch.save(
{
'model': get_inner_model(model).state_dict(),
'optimizer': optimizer.state_dict(),
# rng_state is the state of random generator
'rng_state': torch.get_rng_state(),
'cuda_rng_state': torch.cuda.get_rng_state_all(),
'baseline': baseline.state_dict()
},
# save state of runned model in outputs
os.path.join(opts.save_dir, 'epoch-{}.pt'.format(epoch))
)
avg_reward = validate(model, val_dataset, opts)
if not opts.no_tensorboard:
tb_logger.log_value('val_avg_reward', avg_reward, step)
baseline.epoch_callback(model, epoch)
def train_batch(
model,
optimizer,
baseline,
epoch,
batch_id,
step,
batch,
tb_logger,
opts
):
x, bl_val = baseline.unwrap_batch(batch) # data, baseline(cost of data)
x = move_to(x, opts.device)
bl_val = move_to(bl_val, opts.device) if bl_val is not None else None
# Evaluate proposed model, get costs and log probabilities
# cost, log_likelihood, log_veh = model(x) # both [batch_size]
cost, log_likelihood = model(x) # both [batch_size]
# Evaluate baseline, get baseline loss if any (only for critic)
bl_val, bl_loss = baseline.eval(x, cost) if bl_val is None else (bl_val, 0)
# Calculate loss
# reinforce_loss = ((cost - bl_val) * (log_likelihood + log_veh)).mean()
reinforce_loss = ((cost - bl_val) * log_likelihood).mean()
loss = reinforce_loss + bl_loss
#print('bl_val', bl_val)
# Perform backward pass and optimization step
optimizer.zero_grad()
loss.backward()
# Clip gradient norms and get (clipped) gradient norms for logging
grad_norms = clip_grad_norms(optimizer.param_groups, opts.max_grad_norm)
optimizer.step()
# Logging
if step % int(opts.log_step) == 0:
log_values(cost, grad_norms, epoch, batch_id, step,
log_likelihood, reinforce_loss, bl_loss, tb_logger, opts)