-
Notifications
You must be signed in to change notification settings - Fork 1
/
resnet_model.py
339 lines (284 loc) · 13.5 KB
/
resnet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for the post-activation form of Residual Networks.
Residual networks (ResNets) were proposed in:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
BATCH_NORM_DECAY = 0.9
BATCH_NORM_EPSILON = 1e-5
def batch_norm_relu(inputs, is_training, relu=True, init_zero=False,
data_format='channels_first'):
"""Performs a batch normalization followed by a ReLU.
Args:
inputs: `Tensor` of shape `[batch, channels, ...]`.
is_training: `bool` for whether the model is training.
relu: `bool` if False, omits the ReLU operation.
init_zero: `bool` if True, initializes scale parameter of batch
normalization with 0 instead of 1 (default).
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
Returns:
A normalized `Tensor` with the same `data_format`.
"""
if init_zero:
gamma_initializer = tf.zeros_initializer()
else:
gamma_initializer = tf.ones_initializer()
if data_format == 'channels_first':
axis = 1
else:
axis = 3
inputs = tf.layers.batch_normalization(
inputs=inputs,
axis=axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
center=True,
scale=True,
training=is_training,
fused=True,
gamma_initializer=gamma_initializer)
if relu:
inputs = tf.nn.relu(inputs)
return inputs
def fixed_padding(inputs, kernel_size, data_format='channels_first'):
"""Pads the input along the spatial dimensions independently of input size.
Args:
inputs: `Tensor` of size `[batch, channels, height, width]` or
`[batch, height, width, channels]` depending on `data_format`.
kernel_size: `int` kernel size to be used for `conv2d` or max_pool2d`
operations. Should be a positive integer.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
Returns:
A padded `Tensor` of the same `data_format` with size either intact
(if `kernel_size == 1`) or padded (if `kernel_size > 1`).
"""
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
if data_format == 'channels_first':
padded_inputs = tf.pad(inputs, [[0, 0], [0, 0],
[pad_beg, pad_end], [pad_beg, pad_end]])
else:
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
[pad_beg, pad_end], [0, 0]])
return padded_inputs
def conv2d_fixed_padding(inputs, filters, kernel_size, strides,
data_format='channels_first'):
"""Strided 2-D convolution with explicit padding.
The padding is consistent and is based only on `kernel_size`, not on the
dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
Args:
inputs: `Tensor` of size `[batch, channels, height_in, width_in]`.
filters: `int` number of filters in the convolution.
kernel_size: `int` size of the kernel to be used in the convolution.
strides: `int` strides of the convolution.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
Returns:
A `Tensor` of shape `[batch, filters, height_out, width_out]`.
"""
if strides > 1:
inputs = fixed_padding(inputs, kernel_size, data_format=data_format)
return tf.layers.conv2d(
inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides,
padding=('SAME' if strides == 1 else 'VALID'), use_bias=False,
kernel_initializer=tf.variance_scaling_initializer(),
data_format=data_format)
def residual_block(inputs, filters, is_training, strides,
use_projection=False, data_format='channels_first'):
"""Standard building block for residual networks with BN after convolutions.
Args:
inputs: `Tensor` of size `[batch, channels, height, width]`.
filters: `int` number of filters for the first two convolutions. Note that
the third and final convolution will use 4 times as many filters.
is_training: `bool` for whether the model is in training.
strides: `int` block stride. If greater than 1, this block will ultimately
downsample the input.
use_projection: `bool` for whether this block should use a projection
shortcut (versus the default identity shortcut). This is usually `True`
for the first block of a block group, which may change the number of
filters and the resolution.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
Returns:
The output `Tensor` of the block.
"""
shortcut = inputs
if use_projection:
# Projection shortcut in first layer to match filters and strides
shortcut = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=1, strides=strides,
data_format=data_format)
shortcut = batch_norm_relu(shortcut, is_training, relu=False,
data_format=data_format)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, data_format=data_format)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=1,
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, relu=False, init_zero=True,
data_format=data_format)
return tf.nn.relu(inputs + shortcut)
def bottleneck_block(inputs, filters, is_training, strides,
use_projection=False, data_format='channels_first'):
"""Bottleneck block variant for residual networks with BN after convolutions.
Args:
inputs: `Tensor` of size `[batch, channels, height, width]`.
filters: `int` number of filters for the first two convolutions. Note that
the third and final convolution will use 4 times as many filters.
is_training: `bool` for whether the model is in training.
strides: `int` block stride. If greater than 1, this block will ultimately
downsample the input.
use_projection: `bool` for whether this block should use a projection
shortcut (versus the default identity shortcut). This is usually `True`
for the first block of a block group, which may change the number of
filters and the resolution.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
Returns:
The output `Tensor` of the block.
"""
shortcut = inputs
if use_projection:
# Projection shortcut only in first block within a group. Bottleneck blocks
# end with 4 times the number of filters.
filters_out = 4 * filters
shortcut = conv2d_fixed_padding(
inputs=inputs, filters=filters_out, kernel_size=1, strides=strides,
data_format=data_format)
shortcut = batch_norm_relu(shortcut, is_training, relu=False,
data_format=data_format)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=1, strides=1,
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, data_format=data_format)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, data_format=data_format)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=4 * filters, kernel_size=1, strides=1,
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, relu=False, init_zero=True,
data_format=data_format)
return tf.nn.relu(inputs + shortcut)
def block_group(inputs, filters, block_fn, blocks, strides, is_training, name,
data_format='channels_first'):
"""Creates one group of blocks for the ResNet model.
Args:
inputs: `Tensor` of size `[batch, channels, height, width]`.
filters: `int` number of filters for the first convolution of the layer.
block_fn: `function` for the block to use within the model
blocks: `int` number of blocks contained in the layer.
strides: `int` stride to use for the first convolution of the layer. If
greater than 1, this layer will downsample the input.
is_training: `bool` for whether the model is training.
name: `str`name for the Tensor output of the block layer.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
Returns:
The output `Tensor` of the block layer.
"""
# Only the first block per block_group uses projection shortcut and strides.
inputs = block_fn(inputs, filters, is_training, strides,
use_projection=True, data_format=data_format)
for _ in range(1, blocks):
inputs = block_fn(inputs, filters, is_training, 1,
data_format=data_format)
return tf.identity(inputs, name)
def resnet_v1_generator(block_fn, layers, num_classes,
data_format='channels_first'):
"""Generator for ResNet v1 models.
Args:
block_fn: `function` for the block to use within the model. Either
`residual_block` or `bottleneck_block`.
layers: list of 4 `int`s denoting the number of blocks to include in each
of the 4 block groups. Each group consists of blocks that take inputs of
the same resolution.
num_classes: `int` number of possible classes for image classification.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
Returns:
Model `function` that takes in `inputs` and `is_training` and returns the
output `Tensor` of the ResNet model.
"""
def model(inputs, is_training):
"""Creation of the model graph."""
inputs = conv2d_fixed_padding(
inputs=inputs, filters=64, kernel_size=7, strides=2,
data_format=data_format)
inputs = tf.identity(inputs, 'initial_conv')
inputs = batch_norm_relu(inputs, is_training, data_format=data_format)
inputs = tf.layers.max_pooling2d(
inputs=inputs, pool_size=3, strides=2, padding='SAME',
data_format=data_format)
inputs = tf.identity(inputs, 'initial_max_pool')
inputs = block_group(
inputs=inputs, filters=64, block_fn=block_fn, blocks=layers[0],
strides=1, is_training=is_training, name='block_group1',
data_format=data_format)
inputs = block_group(
inputs=inputs, filters=128, block_fn=block_fn, blocks=layers[1],
strides=2, is_training=is_training, name='block_group2',
data_format=data_format)
inputs = block_group(
inputs=inputs, filters=256, block_fn=block_fn, blocks=layers[2],
strides=2, is_training=is_training, name='block_group3',
data_format=data_format)
inputs = block_group(
inputs=inputs, filters=512, block_fn=block_fn, blocks=layers[3],
strides=2, is_training=is_training, name='block_group4',
data_format=data_format)
# The activation is 7x7 so this is a global average pool.
# TODO(huangyp): reduce_mean will be faster.
pool_size = (inputs.shape[1], inputs.shape[2])
inputs = tf.layers.average_pooling2d(
inputs=inputs, pool_size=pool_size, strides=1, padding='VALID',
data_format=data_format)
inputs = tf.identity(inputs, 'final_avg_pool')
inputs = tf.reshape(
inputs, [-1, 2048 if block_fn is bottleneck_block else 512])
inputs = tf.layers.dense(
inputs=inputs,
units=num_classes,
kernel_initializer=tf.random_normal_initializer(stddev=.01))
inputs = tf.identity(inputs, 'final_dense')
return inputs
model.default_image_size = 224
return model
def resnet_v1(resnet_depth, num_classes, data_format='channels_first'):
"""Returns the ResNet model for a given size and number of output classes."""
model_params = {
18: {'block': residual_block, 'layers': [2, 2, 2, 2]},
34: {'block': residual_block, 'layers': [3, 4, 6, 3]},
50: {'block': bottleneck_block, 'layers': [3, 4, 6, 3]},
101: {'block': bottleneck_block, 'layers': [3, 4, 23, 3]},
152: {'block': bottleneck_block, 'layers': [3, 8, 36, 3]},
200: {'block': bottleneck_block, 'layers': [3, 24, 36, 3]}
}
if resnet_depth not in model_params:
raise ValueError('Not a valid resnet_depth:', resnet_depth)
params = model_params[resnet_depth]
return resnet_v1_generator(
params['block'], params['layers'], num_classes, data_format)