-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_DS_delays_analytics.R
135 lines (105 loc) · 3.67 KB
/
1_DS_delays_analytics.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
install.packages("geosphere")
#NOTE: In CDP find the HMS warehouse directory and external table directory by browsing to:
# Environment -> <env name> -> Data Lake Cluster -> Cloud Storage
# copy and paste the external location to the config setting below.
#Temporary workaround for MLX-975
#In utils/hive-site.xml edit hive.metastore.warehouse.dir and hive.metastore.warehouse.external.dir based on settings in CDP Data Lake -> Cloud Storage
if(!file.exists('/etc/hadoop/conf/hive-site.xml')){
file.copy('/home/cdsw/utils/hive-site.xml', '/etc/hadoop/conf/hive-site.xml')
}
### Load libraries
library(ggplot2)
library(maps)
library(geosphere)
library (DBI)
library(sparklyr)
library(dplyr)
## Connect to Spark. Check spark_defaults.conf for the correct
spark_home_set("/etc/spark/")
config <- spark_config()
config$spark.executor.memory <- "16g"
config$spark.executor.cores <- "4"
config$spark.driver.memory <- "6g"
config$spark.executor.instances <- "5"
config$spark.dynamicAllocation.enabled <- "false"
config$spark.yarn.access.hadoopFileSystems <- "s3a://ml-field/demo/flight-analysis/"
sc <- spark_connect(master = "yarn-client", config=config)
## Read in the flight data from S3
src_databases(sc)
tbl_change_db(sc, 'default')
flights <- tbl(sc, 'flights')
# Plot number of flights per year
flights <- sdf_sample(flights, fraction = .00004, replacement = TRUE, seed = NULL) %>% collect()
flight_counts_by_year <-
flights %>%
group_by(Year) %>%
summarise(count = n())
g <- ggplot(flight_counts_by_year, aes(x = Year, y = count))
g <- g + geom_line(colour = "magenta",
linetype = 1,
size = 0.8)
g <- g + xlab("Year")
g <- g + ylab("Flight number")
g <- g + ggtitle("US flights")
plot(g)
# #See flight number between 2010 and 2013
#Next, let’s dig it for the 2002 data. Let’s plot flight number betwewen 2001 and 2003.
#flight_counts_by_month <- flights %>% filter(Year >= 2010 & Year <= 2013) %>% group_by(Year, Month) %>% summarise(count = n())
flight_counts_by_month <- flights %>% group_by(Year, Month) %>% summarise(count = n())
g <- ggplot(flight_counts_by_month,
aes(x = as.Date(
sprintf(
"%d-%02d-01",
flight_counts_by_month$Year,
flight_counts_by_month$Month
)
), y = count))
g <- g + geom_line(colour = "magenta",
linetype = 1,
size = 0.8)
g <- g + xlab("Year/Month")
g <- g + ylab("Flight number")
g <- g + ggtitle("US flights")
plot(g)
# Next, we will summarize the data by carrier, origin and dest.
flights_by_carrier <-
flights %>%
group_by(Year, UniqueCarrier, Origin, Dest) %>%
summarise(count = n())
flights
#Now we extract AA’s flight.
flights_aa <- flights %>% filter(UniqueCarrier == "AA")
#%>% arrange(count)
flights_aa
#Let’s plot the flight number of AA in 2007.
# draw map with line of AA
xlim <- c(-171.738281,-56.601563)
ylim <- c(12.039321, 71.856229)
# Color settings
pal <- colorRampPalette(c("#333333", "white", "#1292db"))
colors <- pal(100)
map(
"world",
col = "#6B6363",
fill = TRUE,
bg = "#000000",
lwd = 0.05,
xlim = xlim,
ylim = ylim
)
airports <- tbl(sc, 'airports') %>% collect
maxcnt <- nrow(flights_aa)
for (j in 1:length(flights_aa$UniqueCarrier)) {
air1 <- airports[airports$iata == flights_aa[j, ]$Origin, ]
air2 <- airports[airports$iata == flights_aa[j, ]$Dest, ]
inter <-
gcIntermediate(
c(air1[1, ]$long, air1[1, ]$lat),
c(air2[1, ]$long, air2[1, ]$lat),
n = 100,
addStartEnd = TRUE
)
colindex <-
round((flights_aa[j, ]$count / maxcnt) * length(colors))
lines(inter, col = colors[colindex], lwd = 0.8)
}