-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_xgboost.py
63 lines (57 loc) · 1.59 KB
/
train_xgboost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import xgboost as xgb
from hyperparam_optimizing import (
SCORING_LIST,
XGBOOST_BAYESSEARCH_PARAMS,
XGBOOST_RANDOMSEARCH_PARAMS,
perform_bayes_search,
perform_random_search,
)
from preprocessing import get_data
from scoring import calculate_scores
VAL_SPLIT = 0.2
data = get_data(val_split=VAL_SPLIT, apply_label_encoding=True, fillna=True)
X_train, X_val, X_test, y_train, y_val = (
data["X_train"],
data["X_val"],
data["X_test"],
data["y_train"],
data["y_val"],
)
clf = xgb.XGBClassifier(
n_estimators=200,
n_jobs=4,
max_depth=9,
learning_rate=0.05,
subsample=0.9,
colsample_bytree=0.9,
tree_method="gpu_hist",
missing=-999,
use_label_encoder=False,
)
print("Fitting a xgboost model...")
clf.fit(X_train, y_train)
_ = calculate_scores(clf, X_val, y_val)
for scoring in SCORING_LIST:
print("Optimizing xgboost params for", scoring, "with random search...")
best_estimator = perform_random_search(
estimator=clf,
X_train=X_train,
X_val=X_val,
y_train=y_train,
y_val=y_val,
param_grid=XGBOOST_RANDOMSEARCH_PARAMS,
scoring=scoring,
)
_ = calculate_scores(best_estimator, X_val, y_val)
for scoring in SCORING_LIST:
print("Optimizing xgboost params for", scoring, "with bayes search...")
best_estimator = perform_bayes_search(
estimator=clf,
X_train=X_train,
X_val=X_val,
y_train=y_train,
y_val=y_val,
param_grid=XGBOOST_BAYESSEARCH_PARAMS,
scoring=scoring,
)
_ = calculate_scores(best_estimator, X_val, y_val)