forked from HKU-MedAI/WSI-HGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
288 lines (224 loc) · 8.56 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import pickle
import glob
import pandas as pd
import torchvision.transforms
from PIL import Image
from torch.utils.data import Dataset
import dgl
from dgl.data import DGLDataset
from dgl import transforms
# TODO: Probably need to add to config what transforms we need
transform = transforms.Compose(
[
transforms.DropNode(p=0.5),
transforms.DropEdge(p=0.5),
transforms.NodeShuffle(),
transforms.FeatMask(p=0.5, node_feat_names=['feat'])
]
)
class WSIData(Dataset):
def __init__(self, data_root=None):
self.data_root = data_root
self.data_list = []
types = ('*.svs', '*.tif')
for type_ in types:
self.data_list.extend(glob.glob(self.data_root + '/**/'+type_, recursive=True))
def __len__(self):
return len(self.data_list)
def __getitem__(self, index):
wsi_path = self.data_list[index]
return wsi_path
class PatchData(Dataset):
def __init__(self, wsi_path):
"""
Args:
data_24: path to input data
"""
self.patch_paths = [p for p in wsi_path.glob("*")]
self.transforms = torchvision.transforms.Compose([
# torchvision.transforms.GaussianBlur(kernel_size=3),
# torchvision.transforms.RandomResizedCrop(size=256),
torchvision.transforms.Resize(256),
torchvision.transforms.ToTensor(),
# torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def __len__(self):
return len(self.patch_paths)
def __getitem__(self, idx):
img = Image.open(self.patch_paths[idx]).convert('RGB')
img = self.transforms(img)
return img
class GraphDataset(DGLDataset):
def __init__(self, graph_path, normal_path, name_, type_, name='POINTHET'):
"""
:param data_root: Root of graph
:param normal_path: Path to the file contain list of normal images
"""
self.graph_path = graph_path
self.normal_path = normal_path
self.name_ = name_
self.type_ = type_
super().__init__(name)
def process(self):
with open(self.graph_path) as g:
self.graph_paths = [a.strip() for a in g.readlines()]
if self.name_ == 'COAD' or self.name_ == 'BRCA':
with open(self.normal_path) as f:
# List of path to normal images
self.normal_list = [l.strip() for l in f.readlines()]
def __len__(self):
return len(self.graph_paths)
def __getitem__(self, index):
graph_path = self.graph_paths[index]
with open(graph_path, 'rb') as f:
dgl_graph = pickle.load(f)
s = str(graph_path)
if self.name_ == "COAD":
# COAD training and testing data
pos = s.find("TCGA")
label = 0 if s[pos:pos+16] in self.normal_list else 1
elif self.name_ == "BRCA":
# BRCA training and testing data
pos = s.find("TCGA")
label = 0 if s[pos:pos+16] in self.normal_list else 1
elif self.name_ == "ESCA":
# BRCA training and testing data
pos = s.find("TCGA")
label = 0 if s[pos:pos+16] in self.normal_list else 1
else:
raise ValueError
if self.type_ == "train":
dgl_graph = transform(dgl_graph)
# Add self loop here for homogeneous graphs
if dgl_graph.is_homogeneous:
dgl_graph = dgl.add_self_loop(dgl_graph)
return dgl_graph, label
class C16EvalDataset(DGLDataset):
def __init__(self, graph_path, annot_path, name='seg'):
"""
:param data_root: Root of graph
:param annot_path: Path to the file contain list of normal images
"""
self.graph_path = graph_path
self.annot_dir = annot_path
super().__init__(name)
def process(self):
self.graph_paths = []
self.labels = []
self.xml_paths = []
# C16 testing data
df = pd.read_csv('./data/camelyon16/testing/reference.csv')
with open(self.graph_path) as g:
for a in g.readlines():
a = a.strip()
head, tail = os.path.split(a)
label_name = df[(df.NAME == tail[:-4])]['LABEL'].max()
label = 0 if label_name == 'Normal' else 1
xml_path = self.annot_dir + tail[:-4] + ".xml"
if label == 1:
self.labels.append(label)
self.graph_paths.append(a)
self.xml_paths.append(xml_path)
def __len__(self):
return len(self.graph_paths)
def __getitem__(self, index):
graph_path = self.graph_paths[index]
label = self.labels[index]
xml_path = self.xml_paths[index]
with open(graph_path, 'rb') as f:
dgl_graph = pickle.load(f)
# Add self loop here for homogeneous graphs
if dgl_graph.is_homogeneous:
dgl_graph = dgl.add_self_loop(dgl_graph)
return dgl_graph, xml_path, label
class TCGACancerStageDataset(DGLDataset):
def __init__(self, graph_path, label_path, type_, name="tcga_stage"):
"""
:param data_root: Root of graph
:param label_path: Path to the file contain list of normal images
"""
self.graph_path = graph_path
self.label_path = label_path
self.type_ = type_
super().__init__(name)
def process(self):
# Make labels
with open(self.label_path) as f:
mapping = [l.strip().split(sep="\t") for l in f.readlines()]
self.mapping = {k: v for k, v in mapping}
# Read training or testing graphs
with open(self.graph_path) as g:
self.graph_paths = [a.strip() for a in g.readlines()]
def __len__(self):
return len(self.graph_paths)
def __getitem__(self, index):
graph_path = self.graph_paths[index]
with open(graph_path, 'rb') as f:
dgl_graph = pickle.load(f)
s = str(graph_path)
# COAD training and testing data
pos = s.find("TCGA")
lb = self.mapping[s[pos:pos + 12]]
if lb in ['Stage I', 'Stage IA', 'Stage IB']:
label = 0
elif lb in ['Stage IIA', 'Stage IIB', 'Stage II', 'Stage IIC']:
label = 1
elif lb in ['Stage IIIB', 'Stage IIIC', 'Stage III', 'Stage IIIA']:
label = 2
elif lb in ['Stage IV', 'Stage IVA', 'Stage IVB']:
label = 3
else:
raise ValueError("Undefined label")
if self.type_ == "train":
dgl_graph = transform(dgl_graph)
# Add self loop here for homogeneous graphs
if dgl_graph.is_homogeneous:
dgl_graph = dgl.add_self_loop(dgl_graph)
return dgl_graph, label
class TCGACancerTypingDataset(DGLDataset):
def __init__(self, graph_path, label_path, type_, name="tcga_typing"):
"""
:param data_root: Root of graph
:param label_path: Path to the file contain list of normal images
"""
self.graph_path = graph_path
self.label_path = label_path
self.type_ = type_
super().__init__(name)
def process(self):
# Make labels
with open(self.label_path) as f:
if "ESCA" in self.label_path:
mapping = [l.strip().split(sep=",") for l in f.readlines()]
else:
mapping = [l.strip().split(sep="\t") for l in f.readlines()]
self.mapping = {k: v for k, v in mapping}
# Read training or testing graphs
with open(self.graph_path) as g:
self.graph_paths = [a.strip() for a in g.readlines()]
def __len__(self):
return len(self.graph_paths)
def __getitem__(self, index):
graph_path = self.graph_paths[index]
with open(graph_path, 'rb') as f:
dgl_graph = pickle.load(f)
s = str(graph_path)
# COAD training and testing data
pos = s.find("TCGA")
lb = self.mapping[s[pos:pos + 12]]
if "ESCA" in self.label_path:
label = int(lb)
else:
if lb in ['Infiltrating Ductal Carcinoma']:
label = 0
elif lb in ['Infiltrating Lobular Carcinoma']:
label = 1
else:
raise ValueError("Undefined label")
if self.type_ == "train":
dgl_graph = transform(dgl_graph)
# Add self loop here for homogeneous graphs
if dgl_graph.is_homogeneous:
dgl_graph = dgl.add_self_loop(dgl_graph)
return dgl_graph, label