forked from HKU-MedAI/WSI-HGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparser.py
185 lines (172 loc) · 6.09 KB
/
parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from torch import optim, nn
import torch.nn.functional as F
from models import (
GCN,
GAT,
NTPoolGCN,
GIN,
HGT,
HEATNet2,
HEATNet4,
HeteroRGCN,
)
def parse_optimizer(config_optim, model):
opt_method = config_optim["opt_method"].lower()
alpha = config_optim["lr"]
weight_decay = config_optim["weight_decay"]
if opt_method == "adagrad":
optimizer = optim.Adagrad(
model.parameters(),
lr=alpha,
lr_decay=weight_decay,
weight_decay=weight_decay,
)
elif opt_method == "adadelta":
optimizer = optim.Adadelta(
model.parameters(),
lr=alpha,
weight_decay=weight_decay,
)
elif opt_method == "adam":
optimizer = optim.Adam(
model.parameters(),
lr=alpha,
weight_decay=weight_decay,
)
else:
optimizer = optim.SGD(
model.parameters(),
lr=alpha,
weight_decay=weight_decay,
)
return optimizer
def parse_gnn_model(config_gnn):
gnn_name = config_gnn["name"]
if gnn_name == "GAT":
n_layers = config_gnn["num_layers"]
n_heads = config_gnn["num_heads"]
n_out_heads = config_gnn["num_out_heads"]
heads = ([n_heads] * n_layers) + [n_out_heads]
return GAT(
n_layers=config_gnn["num_layers"],
in_dim=config_gnn["in_dim"],
hidden_dim=config_gnn["hidden_dim"],
out_dim=config_gnn["out_dim"],
heads=heads,
activation=F.leaky_relu,
feat_drop=config_gnn["feat_drop"],
attn_drop=config_gnn["attn_drop"],
negative_slope=config_gnn["negative_slope"],
residual=False,
graph_pooling_type=config_gnn["graph_pooling_type"]
)
elif gnn_name == "GCN":
return GCN(
in_dim=config_gnn["in_dim"],
hidden_dim=config_gnn["hidden_dim"],
out_dim=config_gnn["out_dim"],
n_layers=config_gnn["num_layers"],
activation=F.relu,
dropout=config_gnn["feat_drop"],
graph_pooling_type=config_gnn["graph_pooling_type"]
)
elif gnn_name == "GCN_NTPool":
n_node_types = config_gnn["n_node_types"]
node_dict = {str(i): i for i in range(n_node_types)}
return NTPoolGCN(
in_dim=config_gnn["in_dim"],
hidden_dim=config_gnn["hidden_dim"],
out_dim=config_gnn["out_dim"],
node_dict=node_dict,
n_layers=config_gnn["num_layers"],
activation=F.relu,
dropout=config_gnn["feat_drop"],
graph_pooling_type=config_gnn["graph_pooling_type"]
)
elif gnn_name == "GIN":
return GIN(
input_dim=config_gnn["in_dim"],
hidden_dim=config_gnn["hidden_dim"],
out_dim=config_gnn["out_dim"],
num_layers=config_gnn["num_layers"],
num_mlp_layers=config_gnn["num_mlp_layers"],
final_dropout=config_gnn["feat_drop"],
graph_pooling_type=config_gnn["graph_pooling_type"],
neighbor_pooling_type=config_gnn["neighbor_pooling_type"]
)
elif gnn_name == "HetRGCN":
n_node_types = config_gnn["n_node_types"]
etypes = config_gnn["edge_types"]
canonical_etypes = [
(str(s), r, str(t))
for r in etypes
for s in range(n_node_types)
for t in range(n_node_types)
]
node_dict = {str(i): i for i in range(n_node_types)}
canonical_etypes = {et: str(i) for i, et in enumerate(canonical_etypes)}
return HeteroRGCN(
in_dim=config_gnn["in_dim"],
hidden_dim=config_gnn["hidden_dim"],
out_dim=config_gnn["out_dim"],
n_layers=config_gnn["num_layers"],
etypes=canonical_etypes,
node_dict=node_dict,
graph_pooling_type=config_gnn["graph_pooling_type"],
)
elif gnn_name == "HGT":
n_node_types = config_gnn["n_node_types"]
etypes = config_gnn["edge_types"]
canonical_etypes = [
(str(s), r, str(t))
for r in etypes
for s in range(n_node_types)
for t in range(n_node_types)
]
node_dict = {str(i): i for i in range(n_node_types)}
edge_dict = {et: i for i, et in enumerate(canonical_etypes)}
return HGT(
node_dict,
edge_dict,
in_dim=config_gnn["in_dim"],
hidden_dim=config_gnn["hidden_dim"],
out_dim=config_gnn["out_dim"],
n_layers=config_gnn["num_layers"],
n_heads=config_gnn["num_heads"]
)
elif gnn_name == "HEAT2":
n_node_types = config_gnn["n_node_types"]
node_dict = {str(i): i for i in range(n_node_types)}
return HEATNet2(
in_dim=config_gnn["in_dim"],
hidden_dim=config_gnn["hidden_dim"],
out_dim=config_gnn["out_dim"],
n_layers=config_gnn["num_layers"],
n_heads=config_gnn["n_heads"],
node_dict=node_dict,
dropuout=config_gnn["feat_drop"],
graph_pooling_type=config_gnn["graph_pooling_type"]
)
elif gnn_name == "HEAT4":
n_node_types = config_gnn["n_node_types"]
node_dict = {str(i): i for i in range(n_node_types)}
return HEATNet4(
in_dim=config_gnn["in_dim"],
hidden_dim=config_gnn["hidden_dim"],
out_dim=config_gnn["out_dim"],
n_layers=config_gnn["num_layers"],
n_heads=config_gnn["n_heads"],
node_dict=node_dict,
dropuout=config_gnn["feat_drop"],
graph_pooling_type=config_gnn["graph_pooling_type"]
)
else:
raise NotImplementedError("This GNN model is not implemented")
def parse_loss(config_train):
loss_name = config_train["loss"]
if loss_name == "BCE":
return nn.BCELoss()
elif loss_name == "CE":
return nn.CrossEntropyLoss()
else:
raise NotImplementedError("This Loss is not implemented")