-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
131 lines (105 loc) · 4.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import sys
from argparse import ArgumentParser
from logging import getLogger, StreamHandler, FileHandler, INFO
from os import makedirs
from shutil import copyfile
from time import strftime
from networkx import MultiGraph
from os.path import isdir, isfile, join
from torch.nn import NLLLoss
from yaml import safe_load
from torch_autoneb import load_pickle_graph, find_minimum, landscape_exploration, models, store_pickle_graph
from torch_autoneb.config import replace_instanciation, LandscapeExplorationConfig, OptimConfig, EvalConfig
from torch_autoneb.datasets import load_dataset
from torch_autoneb.helpers import pbar, move_to
from torch_autoneb.models import ModelWrapper, DataModel, CompareModel
logger = getLogger(__name__)
def read_config_file(config_file: str, move_to_device: bool = True):
with open(config_file, "r") as file:
config = safe_load(file)
architecture, arguments = replace_instanciation(config["architecture"], models)
if "dataset" in config:
datasets, input_size, output_size = load_dataset(config["dataset"])
arguments["input_size"], arguments["output_size"] = input_size, output_size
else:
datasets = None
model = architecture(**arguments)
if datasets is not None:
model = DataModel(CompareModel(model, NLLLoss()), datasets)
model = ModelWrapper(model)
if move_to_device:
model.to(config["device"])
minima_count = int(config["minima_count"])
min_config = OptimConfig.from_dict(config["minimum"])
lex_config = LandscapeExplorationConfig.from_dict(config["exploration"])
return model, minima_count, min_config, lex_config
def repair_graph(graph, model):
model.adapt_to_config(EvalConfig(1024))
for m in graph.nodes:
found_none = False
for value in graph.nodes[m].values():
if value is None:
found_none = True
if found_none:
model.set_coords_no_grad(graph.nodes[m]["coords"])
graph.nodes[m].update(model.analyse())
return graph
def main():
parser = ArgumentParser()
parser.add_argument("project_directory", nargs=1)
parser.add_argument("config_file", nargs=1)
parser.add_argument("--no-backup", default=False, action="store_true")
args = parser.parse_args()
project_directory = args.project_directory[0]
config_file = args.config_file[0]
graph_path, project_config_path = setup_project(config_file, project_directory)
model, minima_count, min_config, lex_config = read_config_file(project_config_path)
# Setup Logger
root_logger = getLogger()
root_logger.setLevel(INFO)
root_logger.addHandler(StreamHandler(sys.stdout))
root_logger.addHandler(FileHandler(join(project_directory, "exploration.log")))
# === Create/load graph ===
if isfile(graph_path):
if not args.no_backup:
root_logger.info("Copying current 'graph.p' to backup file.")
copyfile(graph_path, graph_path.replace(".p", f"_bak{strftime('%Y%m%d-%H%M')}.p"))
else:
root_logger.info("Not creating a backup of 'graph.p' because of user request.")
graph = repair_graph(load_pickle_graph(graph_path), model)
else:
graph = MultiGraph()
# Call this after every optmisiation
def save_callback():
store_pickle_graph(graph, graph_path)
# === Ensure the specified number of minima ===
for _ in pbar(range(len(graph.nodes), minima_count), "Finding minima"):
minimum_data = find_minimum(model, min_config)
graph.add_node(max(graph.nodes) + 1 if len(graph.nodes) > 0 else 1, **move_to(minimum_data, "cpu"))
save_callback()
# === Connect minima ===
landscape_exploration(graph, model, lex_config, callback=save_callback)
def setup_project(config_file, project_directory):
if not isfile(config_file):
raise ValueError(f"Config file {config_file} not found.")
# Create project directory
if not isdir(project_directory):
makedirs(project_directory)
project_config_path = join(project_directory, "config.yaml")
graph_path = join(project_directory, "graph.p")
if not isfile(project_config_path):
# Copy the config to the project
if isfile(graph_path):
logger.warning("Graph file graph.p exists, but no config file 'config.yaml' was not found in project directory.")
copyfile(config_file, project_config_path)
else:
# Make sure that the config file has not been modified
with open(project_config_path, "r") as file:
project_config = safe_load(file)
with open(config_file, "r") as file:
original_config = safe_load(file)
if project_config != original_config:
raise ValueError(f"Config file 'config.yaml' in project directory is structurally different from original config '{config_file}'.")
return graph_path, project_config_path
if __name__ == '__main__':
main()