forked from dervinism/lfpProcessingFunctions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlfpPowers.m
604 lines (555 loc) · 25.9 KB
/
lfpPowers.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
function [lfpPower, f] = lfpPowers(fileName, chN, sr, options)
% [lfpPower, f] = lfpPowers(fileName, chN, sr, options)
%
% Function estimates LFP signal power of various frequency bands,
% calculates the spectrogram, and detects LFP signal trace saturations
% (flat signal) in a given LFP binary file and recording channels of
% interest.
%
% Input: fileName - an LFP binary file name including the full path. In
% some instances it may be a path to a file containing common
% reference average (CAR). Or it may also be a cell array holding
% paths to both. For more details see options.lfpCAR.
% The function also accepts csv files with a header row, a time
% column, and subsequent lfp channel columns.
% chN - number of channels in the LFP recording.
% sr - sampling rate in Hz.
% options - a structure variable with the following fields:
% bandRange is a cell array with cells corresponding to different
% band range frequencies. Below is an example of how to set up
% one (also the default range, if the field is not set):
%
% delta alpha h theta theta spindles slow beta s gamma f gamma ripples/uf'};
% options.bandRange = {[1 4]; [4 8]; [5 9]; [8 12]; [6.5 16]; [1 16]; [12 30]; [30 50]; [50 120]; [120 200]};
%
% chunkSize is a scalar determining the number of recording data
% samples to load in one instance in order not to overload the
% computer memory. The default is 4500000.
% srInterpInit is the initial interpolated sampling rate. All
% analyses are carried out on data that is down-sampled to this
% rate. The default is 1000 Hz.
% srInterpFinal is the final interpolation rate. The output data
% is further downsampled to this rate. The default is 10 Hz.
% chOI is a vector with indices of channels of interest. The
% default is 1.
% deleteChans is a vector with indices of channels to be removed
% when carrying out the common average referencing (CAR). The
% default is none.
% lfpCAR is a structure used to determine how the common average
% reference should be used by the function. The following
% options are available:
% 'none' - CAR is not used in any way (default).
% 'replace' - CAR is used instead of the LFP signal. In this
% case the user has to supply the full path to the file
% containing CAR as the first input to the function
% (fileName).
% 'subtract' - subtracts CAR from the LFP signal.
% 'add' - add CAR to the LFP signal. In this case the user
% must supply full path to both the lfp recording binary
% file and the file containing CAR. The paths should be
% provided via the first input variable in a form of a cell
% array with the first cell value being the path to the LFP
% binary file and the second cell being the path to the CAR
% file.
% transformFunc specifies the coefficients of a linear
% transformation function of the LFP signal so that
%
% tranformed LFP times = transformFunc.a + transformFunc.b * original LFP times
%
% The default is no transformation. That is, a = 0 and b = 1.
% powerCalcMethod specifies the method to calculate frequency band
% power: 'wavelet' (based on wavelet transform of the raw
% signal) or 'filter' (based on band-pass filtered signal). The
% default is 'wavelet'.
% saturationMethod is a structure used to determine the method for
% finding LFP saturations. Options are the following:
% 'diff' - LFP zero rate of change method.
% 'hist1' - LFP extreme histogram values method. It looks for
% three saturation values including one around zero.
% 'hist2' - LFP extreme histogram values method. It looks for
% two saturation values not including one around zero. This
% is the default method.
% 'combined' - combined hist2 and diff method.
% SDfraction - fraction of the standard deviation window around
% saturation voltage value used for saturation detection if
% hist1 or hist2 methods are used (the default value is 0.05 uV)
% or fraction of the standard deviation window around 0 rate of
% change value if the diff detection method is used (the default
% value is 0.25 (uV/s). If combined method is used, one has to
% specify both values as a two element vector. In this case the
% default is [0.05 0.25].
% spectrogram should be set to true if in addition to frequency
% band power measures you also want to obtain a spectrogram. The
% default is false.
% rippleDuration is a minimal duration of a single sharp
% wave-ripples bout. This is the duration of the impulse that is
% convolved with a Gaussian. The default is 0.05 seconds. For
% more details see McGinley et al. (2015).
% wGaussian is a Gaussian kernel width convolved with a ripple
% bout in order to obtain the ripple rate. The default is 6 SD
% (+/-3 SD). For more details consult McGinley et al. (2015).
% sdGaussian is the duration of a single SD (see McGinley et al.,
% 2015). The default is 1.5 seconds.
% saturationPlot should be true if you want to display the LFP
% saturation detection graphs. The default option is false.
%
% Output: lfpPower - a structure variable with the following fields:
% rippleRate is a cell array with different cells corresponding
% to ripple rate vectors of different LFP channels oh interest.
% meanRippleRate is a cell array of average ripple rates of
% different LFP channels of interest in Hz.
% theta2deltaRatio (a cell array of vectors).
% slowPower (a cell array of vectors).
% fastPower (a cell array of vectors).
% ultraFastPower (a cell array of vectors).
% LFPsaturations (a cell array of vectors).
% nLFPsaturations is a total number of LFP saturations (a cell
% array of scalars).
% fLFPsaturations is a number of LFP saturation per minute on
% average (a cell array fo scalars).
% meanDurationLFPsaturations is the mean duration of LFP
% saturations (a cell array fo scalars).
% wtSpectrogram is a cell array of matrices with each matrix
% corresponding to a channel of interest. The matrix dimensions
% match the size of other output vectors on one side and the
% number of spectral frequencies (fSpectrogram) on the other.
% fSpectrogram is a vector of spectrogram frequencies.
% time is the time vector corresponding to output variables.
% options is the structure variable with options values that were
% used by the function (same as input options).
% f - a figure handle of the LFP rate of change graph.
%
% In order to visualise the spectrogram, adapt the following code example:
% helperCWTTimeFreqPlot(lfpPower.wtSpectrogram{1}, lfpPower.time,...
% lfpPower.fSpectrogram, 'surf', 'Spectrogram for LFP channel #1',...
% 'Seconds', 'Hz');
% set(gca, 'YScale', 'log')
%
% References: McGinley MJ, David SV, McCormick DA. Cortical Membrane
% Potential Signature of Optimal States for Sensory Signal
% Detection. Neuron. 2015;87(1):179-192.
% doi:10.1016/j.neuron.2015.05.038
%% Test the input variables
if iscell(fileName)
medianFile = fileName{2};
fileName = fileName{1};
end
% Default options
options.bandNames = {'delta'; 'alpha'; 'h theta'; 'theta'; 'spindles'; 'slow'; 'beta'; 's gamma'; 'f gamma'; 'ripples/uf'};
if ~isfield(options, 'bandRange')
options.bandRange = { [1 4]; [4 8]; [5 9]; [8 12]; [6.5 16]; [1 16]; [12 30]; [30 50]; [50 120]; [120 200]}; % Hz
end
if ~isfield(options, 'chunkSize')
options.chunkSize = 4500000; % number of samples to read at a time
end
if ~isfield(options, 'srInterpInit')
options.srInterpInit = 1000; % Hz
end
if ~isfield(options, 'srInterpFinal')
options.srInterpFinal = 10; % Hz
end
if ~isfield(options, 'chOI')
options.chOI = 1;
end
if ~isfield(options, 'deleteChans')
options.deleteChans = [];
end
if ~isfield(options, 'lfpCAR')
options.lfpCAR = 'none';
end
if ~isfield(options, 'transformFunc')
options.transformFunc.a = 0;
options.transformFunc.b = 1;
end
if ~isfield(options, 'powerCalcMethod')
options.powerCalcMethod = 'wavelet';
end
if ~isfield(options, 'saturationMethod')
options.saturationMethod = 'hist2';
end
if ~isfield(options, 'SDfraction')
options.SDfraction = [];
end
if ~isfield(options, 'spectrogram')
options.spectrogram = 0;
end
if ~isfield(options, 'rippleDuration')
options.rippleDuration = 0.05; % s
end
if ~isfield(options, 'wGaussian')
options.wGaussian = 6; % Gassian kernel size in SD
end
if ~isfield(options, 'sdGaussian')
options.sdGaussian = 1.5; % SD size in seconds
end
if ~isfield(options, 'saturationPlot')
options.saturationPlot = false;
end
bandNames = options.bandNames;
bandRange = options.bandRange;
chunkSize = options.chunkSize;
srInterpInit = options.srInterpInit;
srInterpFinal = options.srInterpFinal;
chOI = options.chOI;
deleteChans = options.deleteChans;
deleteChans = unique(deleteChans);
lfpCAR = options.lfpCAR;
transformFunc = options.transformFunc;
powerCalcMethod = options.powerCalcMethod;
saturationMethod = options.saturationMethod;
SDfraction = options.SDfraction;
spectrogram = options.spectrogram;
rippleDuration = round(options.rippleDuration*srInterpInit);
wGaussian = options.wGaussian;
sdGaussian = options.sdGaussian;
saturationPlot = options.saturationPlot;
%% intialise storage variables
LFPbandPower = {};
wtSpectrogram = {};
LFPsaturations = {};
nLFPsaturations = {};
fLFPsaturations = {};
meanDurationLFPsaturations = {};
rippleRate = {};
meanRippleRate = {};
theta2deltaRatio = {};
slowPower = {};
fastPower = {};
ultraFastPower = {};
f = {};
%% Load and interpolate the data; then apply wavelet transform to estimate LFP band power
% Load
if ~strcmp(lfpCAR, 'replace')
if strcmp(fileName(end-2:end), 'csv')
[lfp, time] = loadcsv(fileName);
dt = mean(time(2:end)-time(1:end-1));
sr = 1/dt;
nSampsTotal = size(lfp,2);
else
fid = fopen(fileName, 'r');
d = dir(fileName);
nSampsTotal = d.bytes/chN/2;
end
else
load(fileName); %#ok<*LOAD>
nSampsTotal = numel(medianTrace);
end
nChunksTotal = ceil(nSampsTotal/chunkSize);
chunkInd = 1;
sampleCount = 0;
while 1
fprintf(1, 'chunk %d/%d\n', chunkInd, nChunksTotal);
if ~strcmp(lfpCAR, 'replace')
if exist('lfp','var')
if (chunkInd-1)*chunkSize > size(lfp,2)
dat = [];
elseif chunkInd*chunkSize > size(lfp,2)
dat = lfp(:,(chunkInd-1)*chunkSize+1:end);
else
dat = lfp(:,(chunkInd-1)*chunkSize+1:chunkInd*chunkSize);
end
else
dat = fread(fid, [chN chunkSize], '*int16');
end
else
if sampleCount+chunkSize > nSampsTotal
chunkSize = nSampsTotal - sampleCount;
end
if chunkSize == 0
dat = [];
else
dat = zeros(chN,chunkSize);
end
end
if ~isempty(dat)
if strcmp(lfpCAR, 'replace')
datSamples = size(dat,2);
if (exist('medianTrace','var') && ~isempty(medianTrace))
median2Add = int16(repmat(medianTrace(sampleCount+1:sampleCount+datSamples),size(channelMedian,1),1));
else
median2Add = int16(repmat(zeros(size(sampleCount+1:sampleCount+datSamples)),size(channelMedian,1),1));
end
if (exist('channelMedian','var') && ~isempty(channelMedian)) %#ok<*USENS,*NODEF>
median2Add = median2Add + repmat(channelMedian(:,chunkInd),1,size(median2Add,2));
end
dat(1:size(median2Add,1),:) = int16(dat(1:size(median2Add,1),:))+median2Add;
sampleCount = sampleCount + datSamples;
elseif strcmp(lfpCAR, 'subtract')
if deleteChans
chans2include = ones(1,size(dat,1));
chans2include(deleteChans) = zeros(1,numel(deleteChans));
chm = zeros(size(dat,1),1);
chm(logical(chans2include)) = median(dat(logical(chans2include),:),2);
dat = bsxfun(@minus, dat, int16(chm)); % subtract median of each channel
tm = int16(median(dat(logical(chans2include),:),1));
else
chm = median(dat,2);
dat = bsxfun(@minus, dat, chm); % subtract median of each channel
tm = median(dat,1);
end
dat = bsxfun(@minus, dat, tm); % subtract median of each time point
elseif strcmp(lfpCAR, 'add')
load(medianFile); %#ok<*LOAD>
datSamples = size(dat,2);
if (exist('medianTrace','var') && ~isempty(medianTrace))
median2Add = int16(repmat(medianTrace(sampleCount+1:sampleCount+datSamples),size(channelMedian,1),1));
else
median2Add = int16(repmat(zeros(size(sampleCount+1:sampleCount+datSamples)),size(channelMedian,1),1));
end
if (exist('channelMedian','var') && ~isempty(channelMedian)) %#ok<*USENS,*NODEF>
median2Add = median2Add + repmat(channelMedian(:,chunkInd),1,size(median2Add,2));
end
dat(1:size(median2Add,1),:) = dat(1:size(median2Add,1),:)+median2Add;
sampleCount = sampleCount + datSamples;
end
% Interpolate
originalTimes = 1/sr:1/sr:size(dat,2)/sr;
interpTimes = 1/srInterpInit:1/srInterpInit:size(dat,2)/sr;
interpLFP = interp1(originalTimes, double(dat'), interpTimes)';
% Wavelet transform
for iCh = 1:numel(chOI)
LFPbandPowerChunk = zeros(numel(bandRange),numel(interpTimes));
if strcmpi(powerCalcMethod, 'wavelet')
fb = cwtfilterbank('SignalLength',size(interpLFP,2),'SamplingFrequency',srInterpInit,...
'FrequencyLimits',[1 200],'WaveletParameters',[3 16],'VoicesPerOctave',20);
[wt,fr] = cwt(interpLFP(chOI(iCh),:)-mean(interpLFP(chOI(iCh),:)),'FilterBank',fb); % Continuous wavelet transform
for iBand = 1:numel(bandRange)
for iLim = 1:2
[~, LFPbandLimits{iBand}(iLim)] = min(abs(fr-bandRange{iBand}(iLim))); %#ok<*AGROW>
end
LFPbandPowerChunk(iBand,:) = sum(abs(wt(LFPbandLimits{iBand}(2):LFPbandLimits{iBand}(1),:)).^2,1);
end
elseif strcmpi(powerCalcMethod, 'filter')
for iBand = 1:numel(bandRange)
LFPbandPowerChunk(iBand,:) = leaveFrequencies(interpLFP(chOI(iCh),:)-mean(interpLFP(chOI(iCh),:)),...
srInterpInit, bandRange{iBand}(1), bandRange{iBand}(2)).^2;
end
end
if chunkInd == 1
LFPbandPower{iCh} = LFPbandPowerChunk;
else
LFPbandPower{iCh} = [LFPbandPower{iCh} LFPbandPowerChunk];
end
% Spectrogram
if spectrogram
fb = cwtfilterbank('SignalLength',size(interpLFP,2),'SamplingFrequency',srInterpInit,...
'FrequencyLimits',[1 200],'WaveletParameters',[3 16],'VoicesPerOctave',10);
[wtSpectrogramChunk, fSpectrogram] = cwt(interpLFP(chOI(iCh),:),'FilterBank',fb); % Continuous wavelet transform
%helperCWTTimeFreqPlot(wt,interpTimes,f,'surf','Spectrogram for CA1 channel','Seconds','Hz');
%set(gca, 'YScale', 'log')
if chunkInd == 1
wtSpectrogram{iCh} = abs(wtSpectrogramChunk).^2;
else
wtSpectrogram{iCh} = [wtSpectrogram{iCh} abs(wtSpectrogramChunk).^2];
end
end
% Concatenate interpolated LFP traces
if chunkInd == 1
LFPsaturations{iCh} = interpLFP(chOI(iCh),:);
else
LFPsaturations{iCh} = [LFPsaturations{iCh} interpLFP(chOI(iCh),:)];
end
end
else
break
end
chunkInd = chunkInd+1;
end
% Detect LFP trace saturations
for iCh = 1:numel(chOI)
[LFPsaturations{iCh}, interpTimes, nLFPsaturations{iCh}, fLFPsaturations{iCh}, meanDurationLFPsaturations{iCh}, f{iCh}] =...
detectLFPsaturations(LFPsaturations{iCh}, interpTimes(2)-interpTimes(1), saturationMethod, saturationPlot, SDfraction, fileName, chOI(iCh));
end
%% Estimate ripple rate
% Ripple rate calculations are based on McGinley et al. (2015)
for iCh = 1:numel(chOI)
% Descriptive measures
for iName = 1:numel(bandNames)
if strcmpi(bandNames{iName}, 'ripples/uf')
iRipples = iName;
break
end
end
% figure; plot(interpTimes, LFPbandPower{iCh}(iRipples,:)); hold on
medianPower = median(LFPbandPower{iCh}(iRipples,:),'omitnan');
stdPower = std(LFPbandPower{iCh}(iRipples,:),'omitnan');
% stdPowerTop = medianPower+1.96*stdPower;
% stdPowerBottom = medianPower-1.96*stdPower;
stdPowerTop = medianPower+5*stdPower;
stdPowerBottom = medianPower-5*stdPower; %#ok<*NASGU>
%plot(medianPower*ones(1,size(LFPbandPower{iCh},2)))
%plot(stdPowerTop*ones(1,size(LFPbandPower{iCh},2)))
%plot(stdPowerBottom*ones(1,size(LFPbandPower{iCh},2)))
% Detect initial ripples
[ripplePowerPeaks, locations] = findpeaks(LFPbandPower{iCh}(iRipples,:));
locations = locations(ripplePowerPeaks > stdPowerTop);
totalRipplesInit = numel(locations);
% ripplePowerPeaks = ripplePowerPeaks(ripplePowerPeaks > stdPowerTop);
% plot(interpTimes(locations),ripplePowerPeaks, 'r.', 'MarkerSize',5)
% Mark ripple initiation and termination
ripplePowerPeaksInit = zeros(1,size(LFPbandPower{iCh},2));
ripplePowerPeaksInit(locations) = 1;
ripplePowerPeaks = ripplePowerPeaksInit;
for dtRipple = 1:round(rippleDuration/2)
ripplePowerPeaks = ripplePowerPeaks + [ripplePowerPeaksInit(1+dtRipple:end) zeros(1,dtRipple)];
ripplePowerPeaks = ripplePowerPeaks + [zeros(1,dtRipple) ripplePowerPeaksInit(1:end-dtRipple)];
end
ripplePowerPeaks(ripplePowerPeaks > 0) = 1;
locations = 1:size(LFPbandPower{iCh},2);
locations = locations(logical(ripplePowerPeaks));
ripplePowerPeaksInit = ripplePowerPeaks;
% ripplePowerPeaks = ripplePowerPeaks(ripplePowerPeaks > 0);
% plot(interpTimes(locations),ripplePowerPeaks, 'k.', 'MarkerSize',10); hold on
% Total ripple event count
ripplePowerPeaks2 = findpeaks(ripplePowerPeaksInit);
totalRipples = numel(ripplePowerPeaks2);
% Convolve with Gaussian
w = gausswin(wGaussian*sdGaussian*srInterpInit, (wGaussian*sdGaussian*srInterpInit-1)/(2*sdGaussian*srInterpInit));
w = w/sum(w);
ripplePowerPeaks = filtfilt(w,1,ripplePowerPeaksInit);
ripplePowerPeaks = ripplePowerPeaks/sum(ripplePowerPeaks)*sum(LFPbandPower{iCh}(iRipples,:));
%plot(ripplePowerPeaks)
%rippleRateInit = ripplePowerPeaks/mean(ripplePowerPeaks)*((totalRipplesInit/size(LFPbandPower{iCh},2))*srInterpInit); % Hz
rippleRate{iCh} = ripplePowerPeaks/mean(ripplePowerPeaks)*((totalRipples/size(LFPbandPower{iCh},2))*srInterpInit); % Hz
meanRippleRate{iCh} = mean(rippleRate{iCh});
%interpTimes = 1/srInterpInit:1/srInterpInit:size(LFPbandPower{iCh},2)/srInterpInit;
% plot(interpTimes,rippleRate{iCh});
% Down-sample again
%interpTimesFinal = 1/srInterpFinal:1/srInterpFinal:size(LFPbandPower{iCh},2)/srInterpInit;
%rippleRate{iCh} = interp1(interpTimes, rippleRate{iCh}, interpTimesFinal)';
%interpTimesFinal = 1/srInterpFinal:1/srInterpFinal:size(LFPbandPower{iCh},2)/srInterpInit;
%plot(interpTimesFinal,rippleRate{iCh}); hold off
end
%% Calculate theta/delta ratio, slow, fast, and ultra-fast activity power
% Again based on McGinley et al. (2015)
for iCh = 1:numel(chOI)
% Theta/delta ratio
for iName = 1:numel(bandNames)
if strcmpi(bandNames{iName}, 'delta')
iDelta = iName;
end
if strcmpi(bandNames{iName}, 'h theta')
iTheta = iName;
end
end
theta2deltaRatio{iCh} = LFPbandPower{iCh}(iTheta,:)./LFPbandPower{iCh}(iDelta,:);
%d = designFilterLP(1.5, 2, 0.5, 65, srInterpInit);
%t2dRatioFilt{iCh} = filtfilt(d,theta2deltaRatio{iCh});
%t2dRatioFilt{iCh}(t2dRatioFilt{iCh} < 1e-9) = 1e-9;
%figure; plot(interpTimes,theta2deltaRatio{iCh}); hold on
%plot(interpTimes(2000:end-2000),t2dRatioFilt{iCh}(2000:end-2000));
%figure; plot(interpTimes,t2dRatioFilt{iCh}); hold on
%t2dRatioFilt{iCh} = interp1(interpTimes, t2dRatioFilt{iCh}, interpTimesFinal)';
%plot(interpTimesFinal,t2dRatioFilt{iCh}); hold off
% Slow activity power
for iName = 1:numel(bandNames)
if strcmpi(bandNames{iName}, 'delta')
iDelta = iName;
end
if strcmpi(bandNames{iName}, 'alpha')
iAlpha = iName;
end
if strcmpi(bandNames{iName}, 'theta')
iTheta = iName;
end
end
slowPower{iCh} = LFPbandPower{iCh}(iDelta,:) + LFPbandPower{iCh}(iAlpha,:) + LFPbandPower{iCh}(iTheta,:);
%slowPowerFilt{iCh} = filtfilt(d,slowPower{iCh});
%slowPowerFilt{iCh}(slowPowerFilt{iCh} < 1e-9) = 1e-9;
%figure; plot(interpTimes,slowPower{iCh}); hold on
%plot(interpTimes(2000:end-2000),slowPowerFilt{iCh}(2000:end-2000));
%figure; plot(interpTimes,slowPowerFilt{iCh}); hold on
%slowPowerFilt{iCh} = interp1(interpTimes, slowPowerFilt{iCh}, interpTimesFinal)';
%plot(interpTimesFinal,slowPowerFilt{iCh}); hold off
% Fast activity power
for iName = 1:numel(bandNames)
if strcmpi(bandNames{iName}, 'beta')
iBeta = iName;
end
if strcmpi(bandNames{iName}, 's gamma')
iSlowGamma = iName;
end
if strcmpi(bandNames{iName}, 'f Gamma')
iFastGamma = iName;
end
end
fastPower{iCh} = LFPbandPower{iCh}(iBeta,:) + LFPbandPower{iCh}(iSlowGamma,:) + LFPbandPower{iCh}(iFastGamma,:);
%fastPowerFilt{iCh} = filtfilt(d,fastPower{iCh});
%fastPowerFilt{iCh}(fastPowerFilt{iCh} < 1e-9) = 1e-9;
%figure; plot(interpTimes,fastPower{iCh}); hold on
%plot(interpTimes(2000:end-2000),fastPowerFilt{iCh}(2000:end-2000));
%figure; plot(interpTimes,fastPowerFilt{iCh}); hold on
%fastPowerFilt{iCh} = interp1(interpTimes, fastPowerFilt{iCh}, interpTimesFinal)';
%plot(interpTimesFinal,fastPowerFilt{iCh}); hold off
% Ultra-fast activity power
for iName = 1:numel(bandNames)
if strcmpi(bandNames{iName}, 'ripples/uf')
iRipples = iName;
end
end
ultraFastPower{iCh} = LFPbandPower{iCh}(iRipples,:);
%ultraFastPowerFilt{iCh} = filtfilt(d,ultraFastPower{iCh});
%ultraFastPowerFilt{iCh}(ultraFastPowerFilt{iCh} < 1e-9) = 1e-9;
%figure; plot(interpTimes,ultraFastPower{iCh}); hold on
%plot(interpTimes(2000:end-2000),ultraFastPowerFilt{iCh}(2000:end-2000));
%figure; plot(interpTimes,ultraFastPowerFilt{iCh}); hold on
%ultraFastPowerFilt{iCh} = interp1(interpTimes, ultraFastPowerFilt{iCh}, interpTimesFinal)';
%plot(interpTimesFinal,ultraFastPowerFilt{iCh}); hold off
end
%% Transform the LFP signal
if transformFunc.a || transformFunc.b ~= 1
for iCh = 1:numel(chOI)
rippleRate{iCh} = syncLFP(rippleRate{iCh}, 1/srInterpInit, transformFunc);
theta2deltaRatio{iCh} = syncLFP(theta2deltaRatio{iCh}, 1/srInterpInit, transformFunc);
slowPower{iCh} = syncLFP(slowPower{iCh}, 1/srInterpInit, transformFunc);
fastPower{iCh} = syncLFP(fastPower{iCh}, 1/srInterpInit, transformFunc);
ultraFastPower{iCh} = syncLFP(ultraFastPower{iCh}, 1/srInterpInit, transformFunc);
if spectrogram
wtSpectrogram{iCh} = syncLFP(wtSpectrogram{iCh}, 1/srInterpInit, transformFunc);
end
LFPsaturations{iCh} = round(syncLFP(LFPsaturations{iCh}, 1/srInterpInit, transformFunc));
end
end
%% Filter and further down-sample LFP frequency band power measures
interpTimes = 1/srInterpInit:1/srInterpInit:numel(rippleRate{iCh})/srInterpInit;
interpTimesFinal = 1/srInterpFinal:1/srInterpFinal:interpTimes(end);
for iCh = 1:numel(chOI)
d = designFilterLP(1.5, 2, 0.5, 65, srInterpInit);
rippleRate{iCh} = interp1(interpTimes, rippleRate{iCh}, interpTimesFinal);
%plot(interpTimesFinal,rippleRate{iCh}); hold off
t2dRatioFilt = filtfilt(d, theta2deltaRatio{iCh});
t2dRatioFilt = interp1(interpTimes, t2dRatioFilt, interpTimesFinal);
t2dRatioFilt(t2dRatioFilt < 1e-9) = 1e-9;
slowPowerFilt = filtfilt(d, slowPower{iCh});
slowPowerFilt = interp1(interpTimes, slowPowerFilt, interpTimesFinal);
slowPowerFilt(slowPowerFilt < 1e-9) = 1e-9;
fastPowerFilt = filtfilt(d, fastPower{iCh});
fastPowerFilt = interp1(interpTimes, fastPowerFilt, interpTimesFinal);
fastPowerFilt(fastPowerFilt < 1e-9) = 1e-9;
ultraFastPowerFilt = filtfilt(d, ultraFastPower{iCh});
ultraFastPowerFilt = interp1(interpTimes, ultraFastPowerFilt, interpTimesFinal);
ultraFastPowerFilt(ultraFastPowerFilt < 1e-9) = 1e-9;
if spectrogram
wtSpectrogram{iCh} = interp1(interpTimes, wtSpectrogram{iCh}', interpTimesFinal)';
end
LFPsaturations{iCh} = interp1(interpTimes, LFPsaturations{iCh}, interpTimesFinal);
lfpPower.rippleRate{iCh} = single(rippleRate{iCh});
lfpPower.meanRippleRate{iCh} = meanRippleRate{iCh};
lfpPower.theta2deltaRatio{iCh} = single(t2dRatioFilt);
lfpPower.slowPower{iCh} = single(slowPowerFilt);
lfpPower.fastPower{iCh} = single(fastPowerFilt);
lfpPower.ultraFastPower{iCh} = single(ultraFastPowerFilt);
lfpPower.LFPsaturations{iCh} = single(LFPsaturations{iCh});
end
%% Assign remaining output variables
lfpPower.nLFPsaturations = nLFPsaturations;
lfpPower.fLFPsaturations = fLFPsaturations;
lfpPower.meanDurationLFPsaturations = meanDurationLFPsaturations;
if spectrogram
lfpPower.wtSpectrogram = wtSpectrogram;
lfpPower.fSpectrogram = fSpectrogram;
%helperCWTTimeFreqPlot(wtSpectrogram{1}, timeFinal, fSpectrogram, 'surf', 'Spectrogram for CA1 channel', 'Seconds', 'Hz');
%set(gca, 'YScale', 'log')
end
lfpPower.time = single(interpTimesFinal);
lfpPower.options = options;