forked from openhwgroup/cva6
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathriscv_peripherals.sv
758 lines (698 loc) · 29.4 KB
/
riscv_peripherals.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Author: Michael Schaffner <[email protected]>, ETH Zurich
// Date: 14.11.2018
// Description: Ariane chipset for OpenPiton that includes two bootroms
// (linux, baremetal, both with DTB), debug module, clint and plic.
//
// Note that direct system bus accesses are not yet possible due to a missing
// AXI-lite br_master <-> NOC converter module.
//
// The address bases for the individual peripherals are defined in the
// devices.xml file in OpenPiton, and should be set to
//
// Debug 0xfff1000000 <length 0x1000>
// Boot Rom 0xfff1010000 <length 0x10000>
// CLINT 0xfff1020000 <length 0xc0000>
// PLIC 0xfff1100000 <length 0x4000000>
//
module riscv_peripherals #(
parameter int unsigned DataWidth = 64,
parameter int unsigned NumHarts = 1,
parameter int unsigned NumSources = 1,
parameter int unsigned PlicMaxPriority = 7,
parameter bit SwapEndianess = 0,
parameter logic [63:0] DmBase = 64'hfff1000000,
parameter logic [63:0] RomBase = 64'hfff1010000,
parameter logic [63:0] ClintBase = 64'hfff1020000,
parameter logic [63:0] PlicBase = 64'hfff1100000
) (
input clk_i,
input rst_ni,
input testmode_i,
// connections to OpenPiton NoC filters
// Debug/JTAG
input [DataWidth-1:0] buf_ariane_debug_noc2_data_i,
input buf_ariane_debug_noc2_valid_i,
output ariane_debug_buf_noc2_ready_o,
output [DataWidth-1:0] ariane_debug_buf_noc3_data_o,
output ariane_debug_buf_noc3_valid_o,
input buf_ariane_debug_noc3_ready_i,
// Bootrom
input [DataWidth-1:0] buf_ariane_bootrom_noc2_data_i,
input buf_ariane_bootrom_noc2_valid_i,
output ariane_bootrom_buf_noc2_ready_o,
output [DataWidth-1:0] ariane_bootrom_buf_noc3_data_o,
output ariane_bootrom_buf_noc3_valid_o,
input buf_ariane_bootrom_noc3_ready_i,
// CLINT
input [DataWidth-1:0] buf_ariane_clint_noc2_data_i,
input buf_ariane_clint_noc2_valid_i,
output ariane_clint_buf_noc2_ready_o,
output [DataWidth-1:0] ariane_clint_buf_noc3_data_o,
output ariane_clint_buf_noc3_valid_o,
input buf_ariane_clint_noc3_ready_i,
// PLIC
input [DataWidth-1:0] buf_ariane_plic_noc2_data_i,
input buf_ariane_plic_noc2_valid_i,
output ariane_plic_buf_noc2_ready_o,
output [DataWidth-1:0] ariane_plic_buf_noc3_data_o,
output ariane_plic_buf_noc3_valid_o,
input buf_ariane_plic_noc3_ready_i,
// This selects either the BM or linux bootrom
input ariane_boot_sel_i,
// Debug sigs to cores
output ndmreset_o, // non-debug module reset
output dmactive_o, // debug module is active
output [NumHarts-1:0] debug_req_o, // async debug request
input [NumHarts-1:0] unavailable_i, // communicate whether the hart is unavailable (e.g.: power down)
// JTAG
input tck_i,
input tms_i,
input trst_ni,
input td_i,
output td_o,
output tdo_oe_o,
// CLINT
input rtc_i, // Real-time clock in (usually 32.768 kHz)
output [NumHarts-1:0] timer_irq_o, // Timer interrupts
output [NumHarts-1:0] ipi_o, // software interrupt (a.k.a inter-process-interrupt)
// PLIC
input [NumSources-1:0] irq_sources_i,
input [NumSources-1:0] irq_le_i, // 0:level 1:edge
output [NumHarts-1:0][1:0] irq_o // level sensitive IR lines, mip & sip (async)
);
localparam int unsigned AxiIdWidth = 1;
localparam int unsigned AxiAddrWidth = 64;
localparam int unsigned AxiDataWidth = 64;
localparam int unsigned AxiUserWidth = 1;
/////////////////////////////
// Debug module and JTAG
/////////////////////////////
logic debug_req_valid;
logic debug_req_ready;
logic debug_resp_valid;
logic debug_resp_ready;
dm::dmi_req_t debug_req;
dm::dmi_resp_t debug_resp;
`ifdef RISCV_FESVR_SIM
initial begin
$display("[INFO] instantiating FESVR DTM in simulation.");
end
// SiFive's SimDTM Module
// Converts to DPI calls
logic [31:0] sim_exit; // TODO: wire this up in the testbench
logic [1:0] debug_req_bits_op;
assign dmi_req.op = dm::dtm_op_t'(debug_req_bits_op);
SimDTM i_SimDTM (
.clk ( clk_i ),
.reset ( ~rst_ni ),
.debug_req_valid ( debug_req_valid ),
.debug_req_ready ( debug_req_ready ),
.debug_req_bits_addr ( debug_req.addr ),
.debug_req_bits_op ( debug_req_bits_op ),
.debug_req_bits_data ( debug_req.data ),
.debug_resp_valid ( debug_resp_valid ),
.debug_resp_ready ( debug_resp_ready ),
.debug_resp_bits_resp ( debug_resp.resp ),
.debug_resp_bits_data ( debug_resp.data ),
.exit ( sim_exit )
);
`else // RISCV_FESVR_SIM
logic tck, tms, trst_n, tdi, tdo, tdo_oe;
dmi_jtag i_dmi_jtag (
.clk_i ,
.rst_ni ,
.testmode_i ,
.dmi_req_o ( debug_req ),
.dmi_req_valid_o ( debug_req_valid ),
.dmi_req_ready_i ( debug_req_ready ),
.dmi_resp_i ( debug_resp ),
.dmi_resp_ready_o ( debug_resp_ready ),
.dmi_resp_valid_i ( debug_resp_valid ),
.dmi_rst_no ( ), // not connected
.tck_i ( tck ),
.tms_i ( tms ),
.trst_ni ( trst_n ),
.td_i ( tdi ),
.td_o ( tdo ),
.tdo_oe_o ( tdo_oe )
);
`ifdef RISCV_JTAG_SIM
initial begin
$display("[INFO] instantiating JTAG DTM in simulation.");
end
// SiFive's SimJTAG Module
// Converts to DPI calls
logic [31:0] sim_exit; // TODO: wire this up in the testbench
SimJTAG i_SimJTAG (
.clock ( clk_i ),
.reset ( ~rst_ni ),
.enable ( jtag_enable[0] ),
.init_done ( init_done ),
.jtag_TCK ( tck ),
.jtag_TMS ( tms ),
.jtag_TDI ( trst_n ),
.jtag_TRSTn ( td ),
.jtag_TDO_data ( td ),
.jtag_TDO_driven ( tdo_oe ),
.exit ( sim_exit )
);
assign td_o = 1'b0 ;
assign tdo_oe_o = 1'b0 ;
`else // RISCV_JTAG_SIM
assign tck = tck_i ;
assign tms = tms_i ;
assign trst_n = trst_ni ;
assign tdi = td_i ;
assign td_o = tdo ;
assign tdo_oe_o = tdo_oe ;
`endif // RISCV_JTAG_SIM
`endif // RISCV_FESVR_SIM
logic dm_slave_req;
logic dm_slave_we;
logic [64-1:0] dm_slave_addr;
logic [64/8-1:0] dm_slave_be;
logic [64-1:0] dm_slave_wdata;
logic [64-1:0] dm_slave_rdata;
logic dm_master_req;
logic [64-1:0] dm_master_add;
logic dm_master_we;
logic [64-1:0] dm_master_wdata;
logic [64/8-1:0] dm_master_be;
logic dm_master_gnt;
logic dm_master_r_valid;
logic [64-1:0] dm_master_r_rdata;
// debug module
dm_top #(
.NrHarts ( NumHarts ),
.BusWidth ( AxiDataWidth ),
.SelectableHarts ( {NumHarts{1'b1}} )
) i_dm_top (
.clk_i ,
.rst_ni , // PoR
.testmode_i ,
.ndmreset_o ,
.dmactive_o , // active debug session
.debug_req_o ,
.unavailable_i ,
.hartinfo_i ( {NumHarts{ariane_pkg::DebugHartInfo}} ),
.slave_req_i ( dm_slave_req ),
.slave_we_i ( dm_slave_we ),
.slave_addr_i ( dm_slave_addr ),
.slave_be_i ( dm_slave_be ),
.slave_wdata_i ( dm_slave_wdata ),
.slave_rdata_o ( dm_slave_rdata ),
.master_req_o ( dm_master_req ),
.master_add_o ( dm_master_add ),
.master_we_o ( dm_master_we ),
.master_wdata_o ( dm_master_wdata ),
.master_be_o ( dm_master_be ),
.master_gnt_i ( dm_master_gnt ),
.master_r_valid_i ( dm_master_r_valid ),
.master_r_rdata_i ( dm_master_r_rdata ),
.dmi_rst_ni ( rst_ni ),
.dmi_req_valid_i ( debug_req_valid ),
.dmi_req_ready_o ( debug_req_ready ),
.dmi_req_i ( debug_req ),
.dmi_resp_valid_o ( debug_resp_valid ),
.dmi_resp_ready_i ( debug_resp_ready ),
.dmi_resp_o ( debug_resp )
);
AXI_BUS #(
.AXI_ADDR_WIDTH ( AxiAddrWidth ),
.AXI_DATA_WIDTH ( AxiDataWidth ),
.AXI_ID_WIDTH ( AxiIdWidth ),
.AXI_USER_WIDTH ( AxiUserWidth )
) dm_master();
axi2mem #(
.AXI_ID_WIDTH ( AxiIdWidth ),
.AXI_ADDR_WIDTH ( AxiAddrWidth ),
.AXI_DATA_WIDTH ( AxiDataWidth ),
.AXI_USER_WIDTH ( AxiUserWidth )
) i_dm_axi2mem (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.slave ( dm_master ),
.req_o ( dm_slave_req ),
.we_o ( dm_slave_we ),
.addr_o ( dm_slave_addr ),
.be_o ( dm_slave_be ),
.data_o ( dm_slave_wdata ),
.data_i ( dm_slave_rdata )
);
noc_axilite_bridge #(
.SLAVE_RESP_BYTEWIDTH ( 8 ),
.SWAP_ENDIANESS ( SwapEndianess )
) i_debug_axilite_bridge (
.clk ( clk_i ),
.rst ( ~rst_ni ),
// to/from NOC
.splitter_bridge_val ( buf_ariane_debug_noc2_valid_i ),
.splitter_bridge_data ( buf_ariane_debug_noc2_data_i ),
.bridge_splitter_rdy ( ariane_debug_buf_noc2_ready_o ),
.bridge_splitter_val ( ariane_debug_buf_noc3_valid_o ),
.bridge_splitter_data ( ariane_debug_buf_noc3_data_o ),
.splitter_bridge_rdy ( buf_ariane_debug_noc3_ready_i ),
//axi lite signals
//write address channel
.m_axi_awaddr ( dm_master.aw_addr ),
.m_axi_awvalid ( dm_master.aw_valid ),
.m_axi_awready ( dm_master.aw_ready ),
//write data channel
.m_axi_wdata ( dm_master.w_data ),
.m_axi_wstrb ( dm_master.w_strb ),
.m_axi_wvalid ( dm_master.w_valid ),
.m_axi_wready ( dm_master.w_ready ),
//read address channel
.m_axi_araddr ( dm_master.ar_addr ),
.m_axi_arvalid ( dm_master.ar_valid ),
.m_axi_arready ( dm_master.ar_ready ),
//read data channel
.m_axi_rdata ( dm_master.r_data ),
.m_axi_rresp ( dm_master.r_resp ),
.m_axi_rvalid ( dm_master.r_valid ),
.m_axi_rready ( dm_master.r_ready ),
//write response channel
.m_axi_bresp ( dm_master.b_resp ),
.m_axi_bvalid ( dm_master.b_valid ),
.m_axi_bready ( dm_master.b_ready ),
// non-axi-lite signals
.w_reqbuf_size ( ),
.r_reqbuf_size ( )
);
// tie off system bus accesses (not supported yet due to
// missing AXI-lite br_master <-> NOC converter)
assign dm_master_gnt = '0;
assign dm_master_r_valid = '0;
assign dm_master_r_rdata = '0;
// tie off signals not used by AXI-lite
assign dm_master.aw_id = '0;
assign dm_master.aw_len = '0;
assign dm_master.aw_size = 3'b11;// 8byte
assign dm_master.aw_burst = '0;
assign dm_master.aw_lock = '0;
assign dm_master.aw_cache = '0;
assign dm_master.aw_prot = '0;
assign dm_master.aw_qos = '0;
assign dm_master.aw_region = '0;
assign dm_master.aw_atop = '0;
assign dm_master.w_last = 1'b1;
assign dm_master.ar_id = '0;
assign dm_master.ar_len = '0;
assign dm_master.ar_size = 3'b11;// 8byte
assign dm_master.ar_burst = '0;
assign dm_master.ar_lock = '0;
assign dm_master.ar_cache = '0;
assign dm_master.ar_prot = '0;
assign dm_master.ar_qos = '0;
assign dm_master.ar_region = '0;
/////////////////////////////
// Bootrom
/////////////////////////////
logic rom_req;
logic [AxiAddrWidth-1:0] rom_addr;
logic [AxiDataWidth-1:0] rom_rdata, rom_rdata_bm, rom_rdata_linux;
AXI_BUS #(
.AXI_ID_WIDTH ( AxiIdWidth ),
.AXI_ADDR_WIDTH ( AxiAddrWidth ),
.AXI_DATA_WIDTH ( AxiDataWidth ),
.AXI_USER_WIDTH ( AxiUserWidth )
) br_master();
axi2mem #(
.AXI_ID_WIDTH ( AxiIdWidth ),
.AXI_ADDR_WIDTH ( AxiAddrWidth ),
.AXI_DATA_WIDTH ( AxiDataWidth ),
.AXI_USER_WIDTH ( AxiUserWidth )
) i_axi2rom (
.clk_i ,
.rst_ni ,
.slave ( br_master ),
.req_o ( rom_req ),
.we_o ( ),
.addr_o ( rom_addr ),
.be_o ( ),
.data_o ( ),
.data_i ( rom_rdata )
);
bootrom i_bootrom_bm (
.clk_i ,
.req_i ( rom_req ),
.addr_i ( rom_addr ),
.rdata_o ( rom_rdata_bm )
);
bootrom_linux i_bootrom_linux (
.clk_i ,
.req_i ( rom_req ),
.addr_i ( rom_addr ),
.rdata_o ( rom_rdata_linux )
);
// we want to run in baremetal mode when using pitonstream
assign rom_rdata = (ariane_boot_sel_i) ? rom_rdata_bm : rom_rdata_linux;
noc_axilite_bridge #(
.SLAVE_RESP_BYTEWIDTH ( 8 ),
.SWAP_ENDIANESS ( SwapEndianess )
) i_bootrom_axilite_bridge (
.clk ( clk_i ),
.rst ( ~rst_ni ),
// to/from NOC
.splitter_bridge_val ( buf_ariane_bootrom_noc2_valid_i ),
.splitter_bridge_data ( buf_ariane_bootrom_noc2_data_i ),
.bridge_splitter_rdy ( ariane_bootrom_buf_noc2_ready_o ),
.bridge_splitter_val ( ariane_bootrom_buf_noc3_valid_o ),
.bridge_splitter_data ( ariane_bootrom_buf_noc3_data_o ),
.splitter_bridge_rdy ( buf_ariane_bootrom_noc3_ready_i ),
//axi lite signals
//write address channel
.m_axi_awaddr ( br_master.aw_addr ),
.m_axi_awvalid ( br_master.aw_valid ),
.m_axi_awready ( br_master.aw_ready ),
//write data channel
.m_axi_wdata ( br_master.w_data ),
.m_axi_wstrb ( br_master.w_strb ),
.m_axi_wvalid ( br_master.w_valid ),
.m_axi_wready ( br_master.w_ready ),
//read address channel
.m_axi_araddr ( br_master.ar_addr ),
.m_axi_arvalid ( br_master.ar_valid ),
.m_axi_arready ( br_master.ar_ready ),
//read data channel
.m_axi_rdata ( br_master.r_data ),
.m_axi_rresp ( br_master.r_resp ),
.m_axi_rvalid ( br_master.r_valid ),
.m_axi_rready ( br_master.r_ready ),
//write response channel
.m_axi_bresp ( br_master.b_resp ),
.m_axi_bvalid ( br_master.b_valid ),
.m_axi_bready ( br_master.b_ready ),
// non-axi-lite signals
.w_reqbuf_size ( ),
.r_reqbuf_size ( )
);
// tie off signals not used by AXI-lite
assign br_master.aw_id = '0;
assign br_master.aw_len = '0;
assign br_master.aw_size = 3'b11;// 8byte
assign br_master.aw_burst = '0;
assign br_master.aw_lock = '0;
assign br_master.aw_cache = '0;
assign br_master.aw_prot = '0;
assign br_master.aw_qos = '0;
assign br_master.aw_region = '0;
assign br_master.aw_atop = '0;
assign br_master.w_last = 1'b1;
assign br_master.ar_id = '0;
assign br_master.ar_len = '0;
assign br_master.ar_size = 3'b11;// 8byte
assign br_master.ar_burst = '0;
assign br_master.ar_lock = '0;
assign br_master.ar_cache = '0;
assign br_master.ar_prot = '0;
assign br_master.ar_qos = '0;
assign br_master.ar_region = '0;
/////////////////////////////
// CLINT
/////////////////////////////
ariane_axi::req_t clint_axi_req;
ariane_axi::resp_t clint_axi_resp;
clint #(
.AXI_ADDR_WIDTH ( AxiAddrWidth ),
.AXI_DATA_WIDTH ( AxiDataWidth ),
.AXI_ID_WIDTH ( AxiIdWidth ),
.NR_CORES ( NumHarts )
) i_clint (
.clk_i ,
.rst_ni ,
.testmode_i ,
.axi_req_i ( clint_axi_req ),
.axi_resp_o ( clint_axi_resp ),
.rtc_i ,
.timer_irq_o ,
.ipi_o
);
noc_axilite_bridge #(
.SLAVE_RESP_BYTEWIDTH ( 8 ),
.SWAP_ENDIANESS ( SwapEndianess )
) i_clint_axilite_bridge (
.clk ( clk_i ),
.rst ( ~rst_ni ),
// to/from NOC
.splitter_bridge_val ( buf_ariane_clint_noc2_valid_i ),
.splitter_bridge_data ( buf_ariane_clint_noc2_data_i ),
.bridge_splitter_rdy ( ariane_clint_buf_noc2_ready_o ),
.bridge_splitter_val ( ariane_clint_buf_noc3_valid_o ),
.bridge_splitter_data ( ariane_clint_buf_noc3_data_o ),
.splitter_bridge_rdy ( buf_ariane_clint_noc3_ready_i ),
//axi lite signals
//write address channel
.m_axi_awaddr ( clint_axi_req.aw.addr ),
.m_axi_awvalid ( clint_axi_req.aw_valid ),
.m_axi_awready ( clint_axi_resp.aw_ready ),
//write data channel
.m_axi_wdata ( clint_axi_req.w.data ),
.m_axi_wstrb ( clint_axi_req.w.strb ),
.m_axi_wvalid ( clint_axi_req.w_valid ),
.m_axi_wready ( clint_axi_resp.w_ready ),
//read address channel
.m_axi_araddr ( clint_axi_req.ar.addr ),
.m_axi_arvalid ( clint_axi_req.ar_valid ),
.m_axi_arready ( clint_axi_resp.ar_ready ),
//read data channel
.m_axi_rdata ( clint_axi_resp.r.data ),
.m_axi_rresp ( clint_axi_resp.r.resp ),
.m_axi_rvalid ( clint_axi_resp.r_valid ),
.m_axi_rready ( clint_axi_req.r_ready ),
//write response channel
.m_axi_bresp ( clint_axi_resp.b.resp ),
.m_axi_bvalid ( clint_axi_resp.b_valid ),
.m_axi_bready ( clint_axi_req.b_ready ),
// non-axi-lite signals
.w_reqbuf_size ( ),
.r_reqbuf_size ( )
);
// tie off signals not used by AXI-lite
assign clint_axi_req.aw.id = '0;
assign clint_axi_req.aw.len = '0;
assign clint_axi_req.aw.size = 3'b11;// 8byte
assign clint_axi_req.aw.burst = '0;
assign clint_axi_req.aw.lock = '0;
assign clint_axi_req.aw.cache = '0;
assign clint_axi_req.aw.prot = '0;
assign clint_axi_req.aw.qos = '0;
assign clint_axi_req.aw.region = '0;
assign clint_axi_req.aw.atop = '0;
assign clint_axi_req.w.last = 1'b1;
assign clint_axi_req.ar.id = '0;
assign clint_axi_req.ar.len = '0;
assign clint_axi_req.ar.size = 3'b11;// 8byte
assign clint_axi_req.ar.burst = '0;
assign clint_axi_req.ar.lock = '0;
assign clint_axi_req.ar.cache = '0;
assign clint_axi_req.ar.prot = '0;
assign clint_axi_req.ar.qos = '0;
assign clint_axi_req.ar.region = '0;
/////////////////////////////
// PLIC
/////////////////////////////
AXI_BUS #(
.AXI_ID_WIDTH ( AxiIdWidth ),
.AXI_ADDR_WIDTH ( AxiAddrWidth ),
.AXI_DATA_WIDTH ( AxiDataWidth ),
.AXI_USER_WIDTH ( AxiUserWidth )
) plic_master();
noc_axilite_bridge #(
// this enables variable width accesses
// note that the accesses are still 64bit, but the
// write-enables are generated according to the access size
.SLAVE_RESP_BYTEWIDTH ( 0 ),
.SWAP_ENDIANESS ( SwapEndianess ),
// this disables shifting of unaligned read data
.ALIGN_RDATA ( 0 )
) i_plic_axilite_bridge (
.clk ( clk_i ),
.rst ( ~rst_ni ),
// to/from NOC
.splitter_bridge_val ( buf_ariane_plic_noc2_valid_i ),
.splitter_bridge_data ( buf_ariane_plic_noc2_data_i ),
.bridge_splitter_rdy ( ariane_plic_buf_noc2_ready_o ),
.bridge_splitter_val ( ariane_plic_buf_noc3_valid_o ),
.bridge_splitter_data ( ariane_plic_buf_noc3_data_o ),
.splitter_bridge_rdy ( buf_ariane_plic_noc3_ready_i ),
//axi lite signals
//write address channel
.m_axi_awaddr ( plic_master.aw_addr ),
.m_axi_awvalid ( plic_master.aw_valid ),
.m_axi_awready ( plic_master.aw_ready ),
//write data channel
.m_axi_wdata ( plic_master.w_data ),
.m_axi_wstrb ( plic_master.w_strb ),
.m_axi_wvalid ( plic_master.w_valid ),
.m_axi_wready ( plic_master.w_ready ),
//read address channel
.m_axi_araddr ( plic_master.ar_addr ),
.m_axi_arvalid ( plic_master.ar_valid ),
.m_axi_arready ( plic_master.ar_ready ),
//read data channel
.m_axi_rdata ( plic_master.r_data ),
.m_axi_rresp ( plic_master.r_resp ),
.m_axi_rvalid ( plic_master.r_valid ),
.m_axi_rready ( plic_master.r_ready ),
//write response channel
.m_axi_bresp ( plic_master.b_resp ),
.m_axi_bvalid ( plic_master.b_valid ),
.m_axi_bready ( plic_master.b_ready ),
// non-axi-lite signals
.w_reqbuf_size ( plic_master.aw_size ),
.r_reqbuf_size ( plic_master.ar_size )
);
// tie off signals not used by AXI-lite
assign plic_master.aw_id = '0;
assign plic_master.aw_len = '0;
assign plic_master.aw_burst = '0;
assign plic_master.aw_lock = '0;
assign plic_master.aw_cache = '0;
assign plic_master.aw_prot = '0;
assign plic_master.aw_qos = '0;
assign plic_master.aw_region = '0;
assign plic_master.aw_atop = '0;
assign plic_master.w_last = 1'b1;
assign plic_master.ar_id = '0;
assign plic_master.ar_len = '0;
assign plic_master.ar_burst = '0;
assign plic_master.ar_lock = '0;
assign plic_master.ar_cache = '0;
assign plic_master.ar_prot = '0;
assign plic_master.ar_qos = '0;
assign plic_master.ar_region = '0;
reg_intf::reg_intf_resp_d32 plic_resp;
reg_intf::reg_intf_req_a32_d32 plic_req;
enum logic [2:0] {Idle, WriteSecond, ReadSecond, WriteResp, ReadResp} state_d, state_q;
logic [31:0] rword_d, rword_q;
// register read data
assign rword_d = (plic_req.valid && !plic_req.write) ? plic_resp.rdata : rword_q;
assign plic_master.r_data = {plic_resp.rdata, rword_q};
always_ff @(posedge clk_i or negedge rst_ni) begin : p_plic_regs
if (!rst_ni) begin
state_q <= Idle;
rword_q <= '0;
end else begin
state_q <= state_d;
rword_q <= rword_d;
end
end
// this is a simplified AXI statemachine, since the
// W and AW requests always arrive at the same time here
always_comb begin : p_plic_if
automatic logic [31:0] waddr, raddr;
// subtract the base offset (truncated to 32 bits)
waddr = plic_master.aw_addr[31:0] - 32'(PlicBase) + 32'hc000000;
raddr = plic_master.ar_addr[31:0] - 32'(PlicBase) + 32'hc000000;
// AXI-lite
plic_master.aw_ready = plic_resp.ready;
plic_master.w_ready = plic_resp.ready;
plic_master.ar_ready = plic_resp.ready;
plic_master.r_valid = 1'b0;
plic_master.r_resp = '0;
plic_master.b_valid = 1'b0;
plic_master.b_resp = '0;
// PLIC
plic_req.valid = 1'b0;
plic_req.wstrb = '0;
plic_req.write = 1'b0;
plic_req.wdata = plic_master.w_data[31:0];
plic_req.addr = waddr;
// default
state_d = state_q;
unique case (state_q)
Idle: begin
if (plic_master.w_valid && plic_master.aw_valid && plic_resp.ready) begin
plic_req.valid = 1'b1;
plic_req.write = plic_master.w_strb[3:0];
plic_req.wstrb = '1;
// this is a 64bit write, need to write second 32bit chunk in second cycle
if (plic_master.aw_size == 3'b11) begin
state_d = WriteSecond;
end else begin
state_d = WriteResp;
end
end else if (plic_master.ar_valid && plic_resp.ready) begin
plic_req.valid = 1'b1;
plic_req.addr = raddr;
// this is a 64bit read, need to read second 32bit chunk in second cycle
if (plic_master.ar_size == 3'b11) begin
state_d = ReadSecond;
end else begin
state_d = ReadResp;
end
end
end
// write high word
WriteSecond: begin
plic_master.aw_ready = 1'b0;
plic_master.w_ready = 1'b0;
plic_master.ar_ready = 1'b0;
plic_req.addr = waddr + 32'h4;
plic_req.wdata = plic_master.w_data[63:32];
if (plic_resp.ready && plic_master.b_ready) begin
plic_req.valid = 1'b1;
plic_req.write = 1'b1;
plic_req.wstrb = '1;
plic_master.b_valid = 1'b1;
state_d = Idle;
end
end
// read high word
ReadSecond: begin
plic_master.aw_ready = 1'b0;
plic_master.w_ready = 1'b0;
plic_master.ar_ready = 1'b0;
plic_req.addr = raddr + 32'h4;
if (plic_resp.ready && plic_master.r_ready) begin
plic_req.valid = 1'b1;
plic_master.r_valid = 1'b1;
state_d = Idle;
end
end
WriteResp: begin
plic_master.aw_ready = 1'b0;
plic_master.w_ready = 1'b0;
plic_master.ar_ready = 1'b0;
if (plic_master.b_ready) begin
plic_master.b_valid = 1'b1;
state_d = Idle;
end
end
ReadResp: begin
plic_master.aw_ready = 1'b0;
plic_master.w_ready = 1'b0;
plic_master.ar_ready = 1'b0;
if (plic_master.r_ready) begin
plic_master.r_valid = 1'b1;
state_d = Idle;
end
end
default: state_d = Idle;
endcase
end
plic_top #(
.N_SOURCE ( NumSources ),
.N_TARGET ( 2*NumHarts ),
.MAX_PRIO ( PlicMaxPriority )
) i_plic (
.clk_i,
.rst_ni,
.req_i ( plic_req ),
.resp_o ( plic_resp ),
.le_i ( irq_le_i ), // 0:level 1:edge
.irq_sources_i, // already synchronized
.eip_targets_o ( irq_o )
);
endmodule // riscv_peripherals