forked from junyanz/iGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiGAN_script.py
67 lines (62 loc) · 3.67 KB
/
iGAN_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from __future__ import print_function
import argparse
from pydoc import locate
import constrained_opt
import cv2
import numpy as np
from pdb import set_trace as st
def parse_args():
parser = argparse.ArgumentParser(description='iGAN: Interactive Visual Synthesis Powered by GAN')
parser.add_argument('--model_name', dest='model_name', help='the model name', default='outdoor_64', type=str)
parser.add_argument('--model_type', dest='model_type', help='the generative models and its deep learning framework', default='dcgan_theano', type=str)
parser.add_argument('--framework', dest='framework', help='deep learning framework', default='theano')
parser.add_argument('--input_color', dest='input_color', help='input color image', default='./pics/input_color.png')
parser.add_argument('--input_color_mask', dest='input_color_mask', help='input color mask', default='./pics/input_color_mask.png')
parser.add_argument('--input_edge', dest='input_edge', help='input edge image', default='./pics/input_edge.png')
parser.add_argument('--output_result', dest='output_result', help='output_result', default='./pics/script_result.png')
parser.add_argument('--batch_size', dest='batch_size', help='the number of random initializations', type=int, default=64)
parser.add_argument('--n_iters', dest='n_iters', help='the number of total optimization iterations', type=int, default=100)
parser.add_argument('--top_k', dest='top_k', help='the number of the thumbnail results being displayed', type=int, default=16)
parser.add_argument('--model_file', dest='model_file', help='the file that stores the generative model', type=str, default=None)
parser.add_argument('--d_weight', dest='d_weight', help='captures the visual realism based on GAN discriminator', type=float, default=0.0)
args = parser.parse_args()
return args
def preprocess_image(img_path, npx):
im = cv2.imread(img_path, 1)
if im.shape[0] != npx or im.shape[1] != npx:
out = cv2.resize(im, (npx, npx))
else:
out = np.copy(im)
out = cv2.cvtColor(out, cv2.COLOR_BGR2RGB)
return out
if __name__ == '__main__':
args = parse_args()
if not args.model_file: #if the model_file is not specified
args.model_file = './models/%s.%s' % (args.model_name, args.model_type)
for arg in vars(args):
print('[%s] =' % arg, getattr(args, arg))
# initialize model and constrained optimization problem
model_class = locate('model_def.%s' % args.model_type)
model = model_class.Model(model_name=args.model_name, model_file=args.model_file)
opt_class = locate('constrained_opt_%s' % args.framework)
opt_solver = opt_class.OPT_Solver(model, batch_size=args.batch_size, d_weight=args.d_weight)
img_size = opt_solver.get_image_size()
opt_engine = constrained_opt.Constrained_OPT(opt_solver, batch_size=args.batch_size, n_iters=args.n_iters, topK=args.top_k)
# load user inputs
npx = model.npx
im_color = preprocess_image(args.input_color, npx)
im_color_mask = preprocess_image(args.input_color_mask, npx)
im_edge = preprocess_image(args.input_edge, npx)
# run the optimization
opt_engine.init_z()
constraints = [im_color, im_color_mask[... ,[0]], im_edge, im_edge[...,[0]]]
for n in range(args.n_iters):
opt_engine.update_invert(constraints=constraints)
results = opt_engine.get_current_results()
final_result= np.concatenate(results, 1)
# combine input and output
final_vis = np. hstack([im_color, im_color_mask, im_edge, final_result])
final_vis = cv2.cvtColor(final_vis, cv2.COLOR_RGB2BGR)
final_vis = cv2.resize(final_vis, (0, 0), fx=2.0, fy=2.0)
# save
cv2.imwrite(args.output_result, final_vis)