-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
777 lines (685 loc) · 43.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
import math
import os
import time
from argparse import Namespace
import torch
from tqdm.auto import tqdm
import pdb
import utils
from opt import config_parser
from torch.cuda.amp import GradScaler
from torch.cuda.amp import autocast
from functools import partial
import json, random
from renderer import *
from utils import *
from torch.utils.tensorboard import SummaryWriter
import datetime
from dynamics import Dynamics
from dataLoader import dataset_dict
import sys
from torch.profiler import profile, record_function, ProfilerActivity
# torch.backends.cudnn.benchmark = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
renderer = OctreeRender_trilinear_fast
def cuda_empty():
if hasattr(torch.cuda, 'empty_cache'):
torch.cuda.empty_cache()
@torch.no_grad()
def export_mesh(args):
ckpt = torch.load(args.ckpt, map_location=device)
kwargs = ckpt['kwargs']
kwargs.update({'device': device})
tensorf = eval(args.model_name)(**kwargs)
tensorf.load(ckpt)
alpha,_ = tensorf.getDenseAlpha()
convert_sdf_samples_to_ply(alpha.cpu(), f'{args.ckpt[:-3]}.ply',bbox=tensorf.aabb.cpu(), level=0.005)
@torch.no_grad()
def render_test(args):
# init dataset
dataset = dataset_dict[args.dataset_name]
test_dataset = dataset(args.datadir, split='test', downsample=args.downsample_train, is_stack=True,
n_frames=args.n_frames, render_views=args.render_views, scene_box=args.scene_box,
frame_start=args.frame_start, near=args.near, far=args.far, diffuse_kernel=args.diffuse_kernel)
white_bg = test_dataset.white_bg
ndc_ray = args.ndc_ray
if args.temporal_sampler == 'simple':
temporal_sampler = TemporalSampler(args.n_frames, args.n_train_frames)
elif args.temporal_sampler == 'weighted':
temporal_sampler = TemporalWeightedSampler(args.n_frames, args.n_train_frames, args.temperature_start,
args.temperature_end, args.n_iters, args.temporal_sampler_replace)
if not os.path.exists(args.ckpt):
print('the ckpt path does not exists!!')
return
ckpt = torch.load(args.ckpt, map_location=device)
kwargs = ckpt['kwargs']
# kwargs.update({'device': device})
# tensorf = eval(args.model_name)(**kwargs)
tensorf = eval(args.model_name)(args, kwargs['aabb'], kwargs['gridSize'], device,
density_n_comp=kwargs['density_n_comp'], appearance_n_comp=kwargs['appearance_n_comp'],
app_dim=args.data_dim_color, near_far=kwargs['near_far'],
shadingMode=args.shadingMode, alphaMask_thres=args.alpha_mask_thre,
density_shift=args.density_shift, distance_scale=args.distance_scale,
rayMarch_weight_thres=args.rm_weight_mask_thre,
rayMarch_weight_thres_static=args.rm_weight_mask_thre_static,
pos_pe=args.pos_pe, view_pe=args.view_pe, fea_pe=args.fea_pe,
featureC=args.featureC, step_ratio=kwargs['step_ratio'], fea2denseAct=args.fea2denseAct,
den_dim=args.data_dim_density, densityMode=args.densityMode, featureD=args.featureD,
rel_pos_pe=args.rel_pos_pe, n_frames=args.n_frames,
amp=args.amp, temporal_variance_threshold=args.temporal_variance_threshold,
n_frame_for_static=args.n_frame_for_static,
dynamic_threshold=args.dynamic_threshold, n_time_embedding=args.n_time_embedding,
static_dynamic_seperate=args.static_dynamic_seperate,
zero_dynamic_sigma=args.zero_dynamic_sigma,
zero_dynamic_sigma_thresh=args.zero_dynamic_sigma_thresh,
sigma_static_thresh=args.sigma_static_thresh,
n_train_frames=args.n_train_frames,
net_layer_add=args.net_layer_add,
density_n_comp_dynamic=args.n_lamb_sigma_dynamic,
app_n_comp_dynamic=args.n_lamb_sh_dynamic,
interpolation=args.interpolation,
dynamic_granularity=args.dynamic_granularity,
point_wise_dynamic_threshold=args.point_wise_dynamic_threshold,
static_point_detach=args.static_point_detach,
dynamic_pool_kernel_size=args.dynamic_pool_kernel_size,
time_head=args.time_head, filter_thresh=args.filter_threshold,
static_featureC=args.static_featureC,
)
tensorf.load(ckpt)
logfolder = os.path.dirname(args.ckpt)
if args.dense_alpha:
with autocast(enabled=bool(args.amp)):
alpha, sigma = tensorf.getTemporalDenseAlpha(gridSize=(300,150,150))
convert_sdf_samples_to_ply(alpha.cpu()[...,150], f'{args.ckpt[:-3]}.ply', bbox=tensorf.aabb.cpu(), level=0.005)
alpha = alpha.cpu().numpy()
np.save(os.path.join(logfolder, 'dense_alpha.npy'), alpha)
if args.render_train:
os.makedirs(f'{logfolder}/imgs_train_all', exist_ok=True)
train_dataset = dataset(args.datadir, split='train', downsample=args.downsample_train, is_stack=True,
n_frames=args.n_frames, scene_box=args.scene_box, temporal_variance_threshold=args.temporal_variance_threshold,
frame_start=args.frame_start, near=args.near, far=args.far, diffuse_kernel=args.diffuse_kernel)
with autocast(enabled=bool(args.amp)):
PSNRs_test, PSNRs_STA_test, all_metrics = evaluation(train_dataset,tensorf, args, renderer, f'{logfolder}/imgs_train_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device,
static_branch_only=args.static_branch_only_initial)
print(f'======> {args.expname} train all psnr: {np.mean(PSNRs_test)} <========================')
print(f'======> {args.expname} test all psnr sta: {np.mean(PSNRs_STA_test)} <========================')
if args.render_test:
os.makedirs(f'{logfolder}/imgs_test_all', exist_ok=True)
with autocast(enabled=bool(args.amp)):
PSNRs_test, PSNRs_STA_test, all_metrics = evaluation(test_dataset,tensorf, args, renderer, f'{logfolder}/{args.expname}/imgs_test_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device, simplify=(args.n_frames>0),
static_branch_only=args.static_branch_only_initial, remove_foreground=args.remove_foreground)
print(f'======> {args.expname} test all psnr: {np.mean(PSNRs_test)} <========================')
print(f'======> {args.expname} test all psnr sta: {np.mean(PSNRs_STA_test)} <========================')
if args.render_path:
cuda_empty()
c2ws = test_dataset.render_path
os.makedirs(f'{logfolder}/imgs_path_all', exist_ok=True)
with torch.no_grad():
with autocast(enabled=bool(args.amp)):
if args.sigma_static_thresh < 1.0 or args.static_branch_only_initial:
evaluation_path(test_dataset, tensorf, args, c2ws, renderer, f'{logfolder}/{args.expname}/imgs_path_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device,
static_branch_only=args.static_branch_only_initial, temporal_sampler=temporal_sampler,
remove_foreground=args.remove_foreground, start_idx=args.render_path_start)
else:
evaluation_path_efficient(test_dataset, tensorf, args, c2ws, renderer, f'{logfolder}/{args.expname}/imgs_path_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device)
def train_dynamics(args, tensorf, allrays, allrgbs, allstds, ndc_ray, nSamples, scaler, device, iter_ratio=1):
DynamicCriterion = Dynamics(args, device, use_volumetric_render=args.dynamic_use_volumetric_render)
dy_optimizer = torch.optim.Adam(tensorf.get_dynamic_optparam_groups(args.lr_init), betas=(0.9, 0.99))
dy_lr_factor = args.lr_decay_target_ratio ** (1 / (args.n_dynamic_iters*iter_ratio))
pbar_dynamic = tqdm(range(args.n_dynamic_iters*iter_ratio), miniters=args.progress_refresh_rate, file=sys.stdout)
dy_Sampler = SimpleSampler(allrays.shape[0], args.batch_size * 10)
tvreg = TVLoss() if args.model_name == 'TensorVMSplit' else TVLossVoxel()
for iteration in pbar_dynamic:
ray_idx = dy_Sampler.nextids()
rays_train, rgb_train, variance_train = allrays[ray_idx].to(device).float(), allrgbs[ray_idx].to(device).float(), allstds[ray_idx].to(device).float()
# rgb_map, alphas_map, depth_map, weights, uncertainty
dy_optimizer.zero_grad()
with autocast(enabled=bool(args.amp)):
retva = tensorf.forward_dynamics(rays_train.to(device), is_train=True, variance_train=variance_train,
ndc_ray=ndc_ray, N_samples=nSamples,
rgb_train=rgb_train)
dynamic_prediction_loss = DynamicCriterion.calculate_loss(*retva)
# loss_tv = tensorf.TV_loss_dynamic(tvreg) * 2
loss_tv = 0
total_loss = dynamic_prediction_loss + loss_tv
DynamicCriterion.compute_metrics()
if args.amp:
scaler.scale(total_loss).backward()
scaler.step(dy_optimizer)
scaler.update()
else:
total_loss.backward()
dy_optimizer.step()
for param_group in dy_optimizer.param_groups:
param_group['lr'] = param_group['lr'] * dy_lr_factor
current_lr = dy_optimizer.param_groups[0]['lr']
if iteration % args.progress_refresh_rate == 0:
pbar_dynamic.set_description(f'Iteration {iteration:05d}: '
+ f' loss = {total_loss.item():.6f}'
+ f' lr = {current_lr:.6f}')
DynamicCriterion.print_metrics()
cuda_empty()
# evaluation
@torch.no_grad()
def eval_dynamics(args, tensorf, test_dataset, ndc_ray, nSamples, device):
DynamicCriterion = Dynamics(args, device, use_volumetric_render=args.dynamic_use_volumetric_render)
for idx, samples in tqdm(enumerate(test_dataset.all_rays), file=sys.stdout):
rays_test = samples.reshape(-1, samples.shape[-1]).to(device).contiguous()
rgb_test = test_dataset.all_rgbs[idx].reshape(-1, args.n_frames, 3).to(device).contiguous()
std_test = test_dataset.all_stds[idx].reshape(-1).to(device).contiguous()
# rgb_map, alphas_map, depth_map, weights, uncertainty
N_rays_all = rays_test.shape[0]
all_dynamics, all_dynamics_supervision, all_max_dynamics = [], [], []
chunk = 256
for chunk_idx in range(N_rays_all // chunk + int(N_rays_all % chunk > 0)):
with autocast(enabled=bool(args.amp)):
dynamics, dynamics_supervision, max_dynamics = tensorf.forward_dynamics(rays_test[chunk_idx * chunk:(chunk_idx + 1) * chunk], is_train=False,
ndc_ray=ndc_ray, N_samples=nSamples,
rgb_train=rgb_test[chunk_idx * chunk:(chunk_idx + 1) * chunk], variance_train=std_test[chunk_idx * chunk:(chunk_idx + 1) * chunk])
all_dynamics.append(dynamics)
all_dynamics_supervision.append(dynamics_supervision)
all_max_dynamics.append(max_dynamics)
all_dynamics = torch.cat(all_dynamics, dim=0)
all_dynamics_supervision = torch.cat(all_dynamics_supervision, dim=0)
all_max_dynamics = torch.cat(all_max_dynamics, dim=0)
dynamic_prediction_loss = DynamicCriterion.calculate_loss(all_dynamics, all_dynamics_supervision, all_max_dynamics)
print('test loss: {:.4f}'.format(dynamic_prediction_loss.item()))
DynamicCriterion.compute_metrics()
DynamicCriterion.print_metrics()
cuda_empty()
def reconstruction(args):
# init dataset
dataset = dataset_dict[args.dataset_name]
time_dataset_start = time.time()
train_dataset = dataset(args.datadir, split='train', downsample=args.downsample_train, is_stack=False,
n_frames=args.n_frames, scene_box=args.scene_box, temporal_variance_threshold=args.temporal_variance_threshold,
frame_start=args.frame_start, near=args.near, far=args.far, diffuse_kernel=args.diffuse_kernel)
time_dataset_end = time.time()
print(f'Loading Train Dataset: {time_dataset_end-time_dataset_start}s')
time_dataset_start = time_dataset_end
test_dataset = dataset(args.datadir, split='test', downsample=args.downsample_train, is_stack=True,
n_frames=args.n_frames, render_views=args.render_views, scene_box=args.scene_box,
temporal_variance_threshold=args.temporal_variance_threshold,
frame_start=args.frame_start, near=args.near, far=args.far, diffuse_kernel=args.diffuse_kernel)
time_dataset_end = time.time()
print(f'Loading Test Dataset: {time_dataset_end-time_dataset_start}s')
white_bg = train_dataset.white_bg
near_far = train_dataset.near_far
ndc_ray = args.ndc_ray
# init resolution
upsamp_list = args.upsamp_list
update_AlphaMask_list = args.update_AlphaMask_list
n_lamb_sigma = args.n_lamb_sigma
n_lamb_sh = args.n_lamb_sh
args.expname = os.path.basename(args.config.split('.')[0])
# if args.meta_config is not None:
# args.expname = args.expname + '_' + os.path.basename(args.meta_config.split('.')[0])
# args.expname = '_'.join([args.expname, utils.base_dir(args.datadir), str(args.downsample_train)])
logfolder = '{}/{}'.format(args.basedir, args.expname)
print(args.expname, logfolder)
# init log file
os.makedirs(logfolder, exist_ok=True)
os.makedirs(f'{logfolder}/imgs_vis', exist_ok=True)
os.makedirs(f'{logfolder}/imgs_rgba', exist_ok=True)
os.makedirs(f'{logfolder}/rgba', exist_ok=True)
summary_writer = SummaryWriter(logfolder)
# init parameters
# tensorVM, renderer = init_parameters(args, train_dataset.scene_bbox.to(device), reso_list[0])
aabb = train_dataset.scene_bbox.to(device)
reso_cur = N_to_reso(args.N_voxel_init, aabb)
nSamples = min(args.nSamples, cal_n_samples(reso_cur,args.step_ratio))
print(f'Sampling points: {nSamples}')
if args.ckpt is not None:
ckpt = torch.load(args.ckpt, map_location=device)
kwargs = ckpt['kwargs']
kwargs.update({'device':device,
'amp': args.amp,
'temporal_variance_threshold': args.temporal_variance_threshold,
'dynamic_threshold': args.dynamic_threshold,
'n_time_embedding': args.n_time_embedding,
'static_dynamic_seperate': args.static_dynamic_seperate,
'n_frames': args.n_frames,
'dynamic_use_volumetric_render': args.dynamic_use_volumetric_render,
'sigma_static_thresh': args.sigma_static_thresh,
'zero_dynamic_sigma': args.zero_dynamic_sigma,
'zero_dynamic_sigma_thresh': args.zero_dynamic_sigma_thresh,
'n_train_frames': args.n_train_frames,
'net_layer_add': args.net_layer_add,
})
tensorf = eval(args.model_name)(**kwargs)
tensorf.load(ckpt)
else:
tensorf = eval(args.model_name)(args, aabb, reso_cur, device,
density_n_comp=n_lamb_sigma, appearance_n_comp=n_lamb_sh, app_dim=args.data_dim_color, near_far=near_far,
shadingMode=args.shadingMode, alphaMask_thres=args.alpha_mask_thre, density_shift=args.density_shift, distance_scale=args.distance_scale,
rayMarch_weight_thres=args.rm_weight_mask_thre,
pos_pe=args.pos_pe, view_pe=args.view_pe, fea_pe=args.fea_pe, featureC=args.featureC, step_ratio=args.step_ratio, fea2denseAct=args.fea2denseAct,
den_dim=args.data_dim_density, densityMode=args.densityMode, featureD=args.featureD, rel_pos_pe=args.rel_pos_pe, n_frames=args.n_frames,
amp=args.amp, temporal_variance_threshold=args.temporal_variance_threshold, n_frame_for_static=args.n_frame_for_static,
dynamic_threshold=args.dynamic_threshold, n_time_embedding=args.n_time_embedding, static_dynamic_seperate=args.static_dynamic_seperate,
dynamic_use_volumetric_render=args.dynamic_use_volumetric_render, zero_dynamic_sigma=args.zero_dynamic_sigma,
zero_dynamic_sigma_thresh=args.zero_dynamic_sigma_thresh, sigma_static_thresh=args.sigma_static_thresh, n_train_frames=args.n_train_frames,
net_layer_add=args.net_layer_add,
density_n_comp_dynamic=args.n_lamb_sigma_dynamic,
app_n_comp_dynamic=args.n_lamb_sh_dynamic,
interpolation=args.interpolation,
dynamic_granularity=args.dynamic_granularity,
point_wise_dynamic_threshold=args.point_wise_dynamic_threshold,
static_point_detach=args.static_point_detach,
dynamic_pool_kernel_size=args.dynamic_pool_kernel_size,
time_head=args.time_head,
filter_thresh=args.filter_threshold,
static_featureC=args.static_featureC,
)
grad_vars = tensorf.get_optparam_groups(args.lr_dynamic_init, args.lr_dynamic_basis)
static_grad_vars = tensorf.get_static_optparam_groups(args.lr_init, args.lr_basis)
if args.lr_decay_iters > 0:
lr_factor = args.lr_decay_target_ratio**(1/args.lr_decay_iters)
else:
args.lr_decay_iters = args.n_iters
lr_factor = args.lr_decay_target_ratio**(1/args.n_iters)
print("lr decay", args.lr_decay_target_ratio, args.lr_decay_iters)
opt_proto = {
'sgd': torch.optim.SGD,
'adam': partial(torch.optim.Adam, betas=(0.9, 0.99)),
'adamw': partial(torch.optim.AdamW, betas=(0.9, 0.99)),
'rmsp': partial(torch.optim.RMSprop, momentum=0.0),
}[args.optimizer]
optimizer = opt_proto(grad_vars, weight_decay=args.dynamic_weight_decay)
static_optimizer = opt_proto(static_grad_vars)
scaler = GradScaler()
static_scaler = GradScaler()
#linear in logrithmic space
N_voxel_list = ( torch.round(
torch.exp(
torch.linspace(np.log(args.N_voxel_init), np.log(args.N_voxel_final), len(upsamp_list)+1)
)
).long()
).tolist()[1:]
torch.cuda.empty_cache()
if args.static_branch_only_initial:
Metrics = {}
else:
Metrics = {
'PSNRs': [],
'PSNRs_t': [0],
'frac': [],
'tfrac': [],
'hfrac': [],
}
if args.static_dynamic_seperate:
Metrics.update({
'PSNRs_STA': [],
'PSNRs_st': [0],
'sfrac': [],
})
TESTKEYS = ['PSNRs_t', 'PSNRs_st']
batch_factor = [1, 1, 1, 1] if args.batch_factor == [] else args.batch_factor
allrays, allrgbs, allstds = train_dataset.all_rays, train_dataset.all_rgbs, train_dataset.all_stds
dynamicrays, dynamicrgbs, dynamicstds = train_dataset.dynamic_rays, train_dataset.dynamic_rgbs, train_dataset.dynamic_stds
if not args.ndc_ray:
allrays, allrgbs, allstds = tensorf.filtering_rays(allrays, allrgbs, allstds, bbox_only=True)
current_batch_size = int(args.batch_size * batch_factor[0])
print("creating sammpler with batch size: {}".format(current_batch_size))
if args.ray_sampler == 'simple':
print("=================SimpleRay========================")
print('All Rays: {}'.format(allrays.shape[0]))
trainingSampler = SimpleSampler(allrays.shape[0], current_batch_size)
elif args.ray_sampler == 'weighted':
trainingSampler = WeightedRaySampler(allrays.shape[0], current_batch_size, train_dataset.all_rays_weight)
elif args.ray_sampler == 'comp':
trainingSampler = SimpleSampler(allrays.shape[0], current_batch_size)
Ortho_reg_weight = args.Ortho_weight
print("initial Ortho_reg_weight", Ortho_reg_weight)
L1_reg_weight = args.L1_weight_inital
print("initial L1_reg_weight", L1_reg_weight)
TV_weight_density, TV_weight_app = args.TV_weight_density, args.TV_weight_app
tvreg = TVLoss()
sparse_reg = lambda x: torch.abs(1-torch.exp(-args.sparsity_lambda*x))
print(f"initial TV_weight density: {TV_weight_density} appearance: {TV_weight_app}")
# Training Dynamic Volumetric representations
train_dynamics(args, tensorf, allrays, allrgbs, allstds, ndc_ray, nSamples, scaler, device)
eval_dynamics(args, tensorf, test_dataset, ndc_ray, nSamples, device)
DynamicCriterion = Dynamics(args, device, use_volumetric_render=args.dynamic_use_volumetric_render)
if args.temporal_sampler == 'simple':
print("=================SimpleTemporal========================")
temporal_sampler = TemporalSampler(args.n_frames, args.n_train_frames)
elif args.temporal_sampler == 'weighted':
temporal_sampler = TemporalWeightedSampler(args.n_frames, args.n_train_frames, args.temperature_start,
args.temperature_end, args.n_iters, args.temporal_sampler_replace,
method=args.temporal_sampler_method)
elif args.temporal_sampler == 'importance':
temporal_sampler = ImportanceTemporalSampler(args.n_frames, args.n_train_frames)
elif args.temporal_sampler == 'combimportance':
temporal_sampler = CombImportanceTemporalSampler(args.n_frames, args.n_train_frames)
elif args.temporal_sampler == 'continous':
temporal_sampler = ContinousTemporalSampler(args.n_frames, args.n_train_frames)
elif args.temporal_sampler == 'continous_even':
temporal_sampler = ContinousEvenTemporalSampler(args.n_frames, args.n_train_frames)
# debugger = DebugGradient(static_optimizer)
# debugger.check()
pbar = tqdm(range(args.n_iters), miniters=args.progress_refresh_rate, file=sys.stdout)
timing = {}
# tensorf.calc_init_alpha(tuple(reso_cur))
for iteration in pbar:
_time = time.time()
if args.use_cosine_lr_scheduler:
lr_factor = math.cos((iteration + 1.0) / args.n_iters * math.pi / 2) / math.cos((iteration + 0.0) / args.n_iters * math.pi / 2)
gamma_current = iteration/args.n_iters * (args.gamma_end - args.gamma_start) + args.gamma_start
ray_idx = trainingSampler.nextids(gamma=gamma_current)
rays_train, rgb_train, std_train = allrays[ray_idx].to(device).float(), allrgbs[ray_idx].to(device).float(), allstds[ray_idx].to(device).float()
args.static_branch_only = args.static_branch_only_initial
temporal_indices, supervision_rgb_train = temporal_sampler.sample(rgb_train, iteration)
#rgb_map, alphas_map, depth_map, weights, uncertainty
time_ = time.time()
timing['pre'] = time_ - _time
optimizer.zero_grad()
static_optimizer.zero_grad()
with autocast(enabled=bool(args.amp)):
# with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
retva = renderer(rays_train, tensorf, chunk=current_batch_size,
N_samples=nSamples, white_bg = white_bg, ndc_ray=ndc_ray,
device=device, is_train=True, rgb_train=rgb_train,
temporal_indices=temporal_indices, static_branch_only=args.static_branch_only,
std_train=std_train, nodepth=True)
# print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
retva = Namespace(**retva)
# =============== dynamics prediction for points ===============
# dynamics dynamics_supervision shape: Ns
# dynamic_prediction_loss = DynamicCriterion.calculate_loss(dynamics, dynamics_supervision)
# DynamicCriterion.compute_metrics()
# ray_wise_temporal_mask [Nr x T]
total_loss = 0
total_static_loss = 0
if args.static_dynamic_seperate:
if not args.static_branch_only:
# supervision_rgb_train = rgb_train.transpose(0,1)[temporal_indices].transpose(0,1)
if args.dy_loss == 'l2':
loss_ray_wise = ((retva.rgb_map - supervision_rgb_train[retva.ray_wise_temporal_mask])**2)
elif args.dy_loss == 'l1':
loss_ray_wise = ((retva.rgb_map - supervision_rgb_train[retva.ray_wise_temporal_mask]).abs())
else:
raise NotImplementedError
loss_ray_wise = loss_ray_wise.mean(dim=1)
# loss_mask = loss_ray_wise > (iteration /args.n_iters *
# (args.loss_weight_thresh_end - args.loss_weight_thresh_start)
# + args.loss_weight_thresh_start)
# loss = torch.cat([loss_ray_wise[loss_mask],
# (iteration/args.n_iters * (args.simple_sample_weight_end - args.simple_sample_weight) + args.simple_sample_weight) * loss_ray_wise[~loss_mask]]).mean()
# loss_ray_wise [Nr]
# loss ray_weight, std_train [Nr]
if args.ray_weighted == 0:
loss_ray_weight = torch.ones_like(loss_ray_wise)
elif args.ray_weighted == 1:
loss_ray_weight = (std_train.unsqueeze(dim=1).expand(-1, args.n_train_frames)[retva.ray_wise_temporal_mask]).reshape(-1)
elif args.ray_weighted == 2:
loss_ray_weight = (((rgb_train[:,1:,:] - rgb_train[:,:-1,:]).abs().max(dim=1)[0])**args.ray_weight_gamma).mean(dim=1)\
.unsqueeze(dim=1).expand(-1, args.n_train_frames)[retva.ray_wise_temporal_mask].reshape(-1)
loss = (loss_ray_wise * loss_ray_weight).sum()/loss_ray_weight.sum()
# hard_fraction = loss_mask.sum()/(loss_mask.shape[0])
Metrics['hfrac'].append(1.0)
# loss = ((retva.rgb_map - rgb_train[retva.ray_wise_temporal_mask])**2).mean()
total_loss += loss
Metrics['PSNRs'].append(-10.0 * np.log(loss.item()) / np.log(10.0))
Metrics['frac'].append(retva.fraction)
Metrics['tfrac'].append(retva.temporal_fraction)
if args.static_type == 'mean':
static_supervision = rgb_train.mean(dim=1)
elif args.static_type == 'median':
static_supervision = rgb_train.median(dim=1)[0]
elif args.static_type == 'single_frame':
static_supervision = torch.zeros(rgb_train.shape[0], rgb_train.shape[2]).to(rgb_train)
ray_dynamic_mask = retva.ray_wise_temporal_mask.any(dim=1)
static_supervision[ray_dynamic_mask] = rgb_train[ray_dynamic_mask].mean(dim=1)
static_supervision[~ray_dynamic_mask] = rgb_train[~ray_dynamic_mask][:,0,:]
else:
raise NotImplementedError
if args.static_loss == 'l2':
loss_static = ((retva.static_rgb_map - static_supervision)**2).mean()
elif args.static_loss == 'l1':
loss_static = ((retva.static_rgb_map - static_supervision).abs()).mean()
else:
raise NotImplementedError
total_static_loss += loss_static
Metrics['PSNRs_STA'].append(-10.0 * np.log(loss_static.item()) / np.log(10.0))
Metrics['sfrac'].append(retva.static_fraction)
else:
loss_weight = (retva.ray_wise_temporal_mask.float().mean(dim=1)).unsqueeze(dim=1).expand(-1, args.n_frames)
weight_static = torch.ones_like(loss_weight) * args.loss_weight_static
weight_dynamic = torch.ones_like(loss_weight)
loss_weight = torch.where((loss_weight-1).abs()<0.0001, weight_dynamic, weight_static)
loss_weight = loss_weight[retva.ray_wise_temporal_mask]
_distance = ((retva.rgb_map - rgb_train[retva.ray_wise_temporal_mask]) ** 2).mean(dim=1) # Nrv
loss = _distance.sum()/loss_weight.sum()
total_loss += loss
# loss = torch.mean()
_time = time.time()
timing['calc'] = _time - time_
# loss
# if args.dynamic_reg_weight > 0:
# total_loss += args.dynamic_reg_weight * dynamic_prediction_loss
if not args.static_branch_only and args.time_head == 'forrier' and args.filter_loss_weight > 0:
total_loss += args.filter_loss_weight * retva.filter_loss
if not args.static_branch_only and args.sigma_entropy_weight > 0:
total_loss += args.sigma_entropy_weight * entropy_loss(retva.sigma_ray_wise)
if args.sigma_entropy_weight_static > 0:
total_static_loss += args.sigma_entropy_weight_static * entropy_loss(retva.static_sigma)
if not args.static_branch_only and args.sigma_decay > 0:
if args.sigma_decay_method == 'l2':
total_loss += args.sigma_decay * (retva.validsigma**2).mean()
elif args.sigma_decay_method == 'l1':
total_loss += args.sigma_decay * retva.validsigma.abs().mean()
else:
raise NotImplementedError
if args.sigma_decay_static > 0:
if args.sigma_decay_method == 'l2':
total_static_loss += args.sigma_decay_static * (retva.static_validsigma**2).mean()
elif args.sigma_decay_method == 'l1':
total_static_loss += args.sigma_decay_static * retva.static_validsigma.abs().mean()
else:
raise NotImplementedError
if not args.static_branch_only and args.sigma_diff_weight > 0:
if args.sigma_diff_method == 'l2':
total_loss += args.sigma_diff_weight * (retva.sigma_diff.mean(dim=-1)**2).mean()
elif args.sigma_diff_method == 'log':
total_loss += args.sigma_diff_weight * consistency_loss(retva.sigma_diff, thresh=args.sigma_diff_log_thresh)
if not args.static_branch_only and args.rgb_diff_weight > 0:
total_loss += args.rgb_diff_weight * consistency_loss(retva.rgb_diff, thresh=args.rgb_diff_log_thresh, rgb=True)
if not args.static_branch_only and Ortho_reg_weight > 0:
loss_reg = tensorf.vector_comp_diffs()
total_loss += Ortho_reg_weight*loss_reg
summary_writer.add_scalar('train/reg', loss_reg.detach().item(), global_step=iteration)
if L1_reg_weight > 0:
if not args.static_branch_only:
loss_reg_L1 = tensorf.density_L1(sparse_reg)
total_loss = total_loss + L1_reg_weight * loss_reg_L1
loss_reg_L1_static = tensorf.density_L1_static(sparse_reg)
total_static_loss = total_static_loss + L1_reg_weight * loss_reg_L1_static
summary_writer.add_scalar('train/reg_l1', loss_reg_L1.detach().item(), global_step=iteration)
if TV_weight_density>0 and iteration < args.TV_loss_end_iteration:
TV_weight_density *= lr_factor
if not args.static_branch_only and args.TV_dynamic_factor > 0:
loss_tv = tensorf.TV_loss_density(tvreg) * TV_weight_density * args.TV_dynamic_factor
total_loss = total_loss + loss_tv
if args.static_dynamic_seperate:
loss_tv = tensorf.TV_loss_static_density(tvreg) * TV_weight_density
total_static_loss = total_static_loss + loss_tv
summary_writer.add_scalar('train/reg_tv_density', loss_tv.detach().item(), global_step=iteration)
if TV_weight_app>0 and iteration < args.TV_loss_end_iteration:
TV_weight_app *= lr_factor
if not args.static_branch_only and args.TV_dynamic_factor > 0:
loss_tv = tensorf.TV_loss_app(tvreg) * TV_weight_app * args.TV_dynamic_factor
total_loss = total_loss + loss_tv
if args.static_dynamic_seperate:
loss_tv = tensorf.TV_loss_static_app(tvreg) * TV_weight_app
total_static_loss = total_static_loss + loss_tv
summary_writer.add_scalar('train/reg_tv_app', loss_tv.detach().item(), global_step=iteration)
time_ = time.time()
timing['reg'] = time_ - _time
if args.amp:
static_scaler.scale(total_static_loss).backward()
static_scaler.step(static_optimizer)
static_scaler.update()
if not args.static_branch_only:
scaler.scale(total_loss).backward()
scaler.step(optimizer)
scaler.update()
# debugger.check()
else:
total_static_loss.backward()
static_optimizer.step()
if not args.static_branch_only:
total_loss.backward()
optimizer.step()
_time = time.time()
timing['backward'] = _time - time_
# print(timing)
if not args.static_branch_only:
loss = loss.detach().item()
summary_writer.add_scalar('train/mse', loss, global_step=iteration)
for key in Metrics.keys():
if key in TESTKEYS:
continue
summary_writer.add_scalar('train/{}'.format(key), Metrics[key][-1], global_step=iteration)
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * lr_factor
for param_group in static_optimizer.param_groups:
param_group['lr'] = param_group['lr'] * lr_factor
first_group_lr = optimizer.param_groups[0]['lr']
# Print the current values of the losses.
if iteration % args.progress_refresh_rate == 0:
if not args.static_branch_only:
description = f'Iteration {iteration:05d}:' \
+ f' mse:{loss:.2f}' \
+ f' loss:{total_loss.item():.2f}' \
+ f' LR_G1:{first_group_lr: .3f} '
else:
description = f'Iteration {iteration:05d}:' \
+ f' loss:{total_static_loss.item():.2f}' \
+ f' LR_G1:{first_group_lr: .3f} '
for key in Metrics.keys():
description += '{}:{:.2f} '.format(key.lower(), float(np.mean(Metrics[key])))
pbar.set_description(description)
for key in Metrics.keys():
if key not in TESTKEYS:
Metrics[key] = []
if iteration % args.vis_every == args.vis_every - 1 and args.N_vis!=0:
tensorf.save(f'{logfolder}/{args.expname}.th')
cuda_empty()
with autocast(enabled=bool(args.amp)):
Metrics['PSNRs_t'], Metrics['PSNRs_st'], all_metrics = evaluation(test_dataset,tensorf, args, renderer, f'{logfolder}/imgs_vis/', N_vis=args.N_vis,
prtx=f'{iteration:06d}_', N_samples=nSamples, white_bg = white_bg, ndc_ray=ndc_ray, compute_extra_metrics=False,
simplify=True, static_branch_only=args.static_branch_only)
summary_writer.add_scalar('test/psnr', np.mean(Metrics['PSNRs_t']), global_step=iteration)
summary_writer.add_scalar('test/psnr_sta', np.mean(Metrics['PSNRs_st']), global_step=iteration)
cuda_empty()
if iteration in update_AlphaMask_list:
# if reso_cur[0] * reso_cur[1] * reso_cur[2]<330**3:# update volume resolution
reso_mask = reso_cur
new_aabb = tensorf.updateAlphaMask(tuple(reso_mask))
print(new_aabb)
if iteration == update_AlphaMask_list[0]:
tensorf.shrink(new_aabb)
# tensorVM.alphaMask = None
L1_reg_weight = args.L1_weight_rest
print("continuing L1_reg_weight", L1_reg_weight)
if not args.ndc_ray and iteration == update_AlphaMask_list[1]:
# filter rays outside the bbox
allrays,allrgbs = tensorf.filtering_rays(allrays,allrgbs)
# trainingSampler = SimpleSampler(allrgbs.shape[0], args.batch_size)
cuda_empty()
current_batch_size = int(batch_factor[update_AlphaMask_list.index(iteration)] * args.batch_size)
print("re-creating sammpler with batch size: {}".format(current_batch_size))
# trainingSampler = SimpleSampler(allrgbs.shape[0], current_batch_size)
if args.ray_sampler == 'simple':
trainingSampler = SimpleSampler(allrays.shape[0], current_batch_size)
elif args.ray_sampler == 'weighted':
trainingSampler = WeightedRaySampler(allrays.shape[0], current_batch_size, train_dataset.all_rays_weight)
if args.ray_sampler == 'comp' and iteration == args.ray_sampler_shift:
print('Shifting Training Sampler')
trainingSampler = WeightedRaySampler(allrays.shape[0], current_batch_size, train_dataset.all_rays_weight)
if iteration == args.shift_std:
print('Shifting STDs')
allstds = train_dataset.shift_stds()
test_dataset.shift_stds()
if iteration not in upsamp_list:
train_dynamics(args, tensorf, allrays, allrgbs, allstds, ndc_ray, nSamples, scaler, device, iter_ratio=2)
eval_dynamics(args, tensorf, test_dataset, ndc_ray, nSamples, device)
cuda_empty()
if iteration in upsamp_list:
n_voxels = N_voxel_list.pop(0)
reso_cur = N_to_reso(n_voxels, tensorf.aabb)
nSamples = min(args.nSamples, cal_n_samples(reso_cur,args.step_ratio))
tensorf.upsample_volume_grid(reso_cur)
if args.lr_upsample_reset:
print("reset lr to initial")
lr_scale = 1 #0.1 ** (iteration / args.n_iters)
else:
lr_scale = args.lr_decay_target_ratio ** (iteration / args.n_iters)
grad_vars = tensorf.get_optparam_groups(args.lr_dynamic_init*lr_scale, args.lr_dynamic_basis*lr_scale)
optimizer = opt_proto(grad_vars, weight_decay=args.dynamic_weight_decay)
static_grad_vars = tensorf.get_static_optparam_groups(args.lr_init*lr_scale, args.lr_basis*lr_scale)
static_optimizer = opt_proto(static_grad_vars)
train_dynamics(args, tensorf, allrays, allrgbs, allstds, ndc_ray, nSamples, scaler, device, iter_ratio=(2 if iteration==upsamp_list[-1] else 1))
eval_dynamics(args, tensorf, test_dataset, ndc_ray, nSamples, device)
cuda_empty()
if args.update_stepratio_iters is not None and iteration in args.update_stepratio_iters:
_idx = args.update_stepratio_iters.index(iteration)
tensorf.update_stepRatio(args.update_stepratio[_idx])
nSamples = min(args.nSamples, cal_n_samples(reso_cur, args.update_stepratio[_idx]))
print(f'Sampling points: {nSamples}')
if args.n_iters > 1000 and (iteration % 1000 == 0 or iteration == args.n_iters-1):
tensorf.save(f'{logfolder}/{args.expname}.th')
cuda_empty()
if args.render_train:
os.makedirs(f'{logfolder}/imgs_train_all', exist_ok=True)
train_dataset = dataset(args.datadir, split='train', downsample=args.downsample_train, is_stack=True,
scene_box=args.scene_box)
with autocast(enabled=bool(args.amp)):
PSNRs_test, PSNRs_STA_test, all_metrics = evaluation(train_dataset,tensorf, args, renderer, f'{logfolder}/imgs_train_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device,
static_branch_only=args.static_branch_only)
print(f'======> {args.expname} test all psnr: {np.mean(PSNRs_test)} <========================')
print(f'======> {args.expname} test all psnr sta: {np.mean(PSNRs_STA_test)} <========================')
# evaluate images existing in dataset, can not generate a continuous video for llff data.
if args.render_test:
os.makedirs(f'{logfolder}/imgs_test_all', exist_ok=True)
with autocast(enabled=bool(args.amp)):
PSNRs_test, PSNRs_STA_test, all_metrics = evaluation(test_dataset,tensorf, args, renderer, f'{logfolder}/imgs_test_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device,
simplify=(args.n_frames>0), static_branch_only=args.static_branch_only)
summary_writer.add_scalar('test/psnr_all', np.mean(PSNRs_test), global_step=iteration)
summary_writer.add_scalar('test/psnr_sta_all', np.mean(PSNRs_STA_test), global_step=iteration)
print(f'======> {args.expname} test all psnr: {np.mean(PSNRs_test)} <========================')
print(f'======> {args.expname} test all psnr sta: {np.mean(PSNRs_STA_test)} <========================')
# for llff data. without many images as ground truth, novel views are rendered without measuring metrics
if args.render_path:
c2ws = test_dataset.render_path
# c2ws = test_dataset.poses
print('========>',c2ws.shape)
os.makedirs(f'{logfolder}/imgs_path_all', exist_ok=True)
with autocast(enabled=bool(args.amp)):
if args.sigma_static_thresh < 1.0 or args.static_branch_only:
print("evaluating path")
evaluation_path(test_dataset, tensorf, args, c2ws, renderer, f'{logfolder}/imgs_path_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device,
static_branch_only=args.static_branch_only, temporal_sampler=temporal_sampler)
else:
evaluation_path_efficient(test_dataset, tensorf, args, c2ws, renderer, f'{logfolder}/imgs_path_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device)
if __name__ == '__main__':
torch.set_default_dtype(torch.float32)
torch.manual_seed(20211202)
np.random.seed(20211202)
args = config_parser()
print(args)
if args.export_mesh:
export_mesh(args)
if args.render_only and (args.render_test or args.render_path or args.dense_alpha):
render_test(args)
else:
reconstruction(args)