-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgen_subsets.py
204 lines (182 loc) · 5.81 KB
/
gen_subsets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""Generates the train, val, and test split for STVR.
The generated pkl files contain a tuple (boxes, categories). Details of them are
defined in load_subset(). The generated json files contain the following data:
[({frames: [query_frame_nos],
boxes: [[query_bounding_box]],
id: query_video_id,
label: query_combined_label},
{start: reference_start_frame_no,
end: reference_end_frame_no,
id: reference_video_id,
gt: [[[reference_bounding_box]]]})].
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import cPickle as pkl
import csv
import json
import numpy as np
from absl import app
from absl import flags
FLAGS = flags.FLAGS
np.random.seed(0)
def load_subset(subset):
"""Loads one csv file.
Args:
subset: Either train or val.
Returns:
boxes: A dictionary: {(video_id, frame_no, person_id): bounding_box}.
categories: A dictionary:
{combined_label: [(video_id, person_id, [frame_nos])]}.
cat2: A dictionary: {combined_label: {video_id: {frame_no: [person_ids]}}}.
"""
instances = {}
boxes = {}
categories = {}
cat2 = {}
with open('data/ava_%s_v2.1.csv' % subset, 'r') as f:
reader = csv.reader(f)
for row in reader:
index = (row[0], row[7])
if index in instances:
instances[index].setdefault(int(row[1]), []).append(int(row[6]))
else:
instances[index] = {}
instances[index].setdefault(int(row[1]), []).append(int(row[6]))
index = (row[0], row[1], row[7])
box = map(float, row[2:6])
if index in boxes:
assert boxes[index] == box, index
else:
boxes[index] = box
for k in instances.keys():
v = instances[k]
val = []
label_frame = {}
for f, l in v.items():
l.sort()
label_frame.setdefault(tuple(l), []).append(f)
for l, f in label_frame.items():
if l not in cat2:
cat2[l] = {}
if k[0] not in cat2[l]:
cat2[l][k[0]] = {}
target = cat2[l][k[0]]
for i in f:
target.setdefault(i, []).append(k[1])
f.sort()
f.append(99999)
prev = 0
for i in range(len(f) - 1):
if f[i] + 1 != f[i + 1]:
val.append((f[prev:i + 1], l))
categories.setdefault(l, []).append(k + (f[prev:i + 1],))
prev = i + 1
instances[k] = val
return boxes, categories, cat2
def subset(boxes, cat, cat2, labels):
labels = [tuple(i) for i in labels]
cat = {i: cat[i] for i in labels}
cat2 = {i: cat2[i] for i in labels}
new_boxes = {}
for k, v in cat.items():
for vid, sub, frame in v:
for f in frame:
index = (vid, '%04d' % f, sub)
box = boxes[index]
box = [box[1], box[0], box[3], box[2]]
new_boxes[index] = box
return new_boxes, cat, cat2
def filter_subset(boxes, cat, labels):
"""Removes the val/test categories in the training set."""
labels = [tuple(i) for i in labels]
rm = set()
for k, v in cat.items():
if k not in labels:
continue
for vid, sub, frame in v:
for f in frame:
rm.add((vid, f))
for k in cat.keys():
if k in labels:
del cat[k]
new_boxes = {}
new_cat = {}
for k, v in cat.items():
if k not in new_cat:
new_cat[k] = []
for vid, sub, frame in v:
prev = 0
for i, f in enumerate(frame):
if (vid, f) in rm:
if i > prev:
new_cat[k].append((vid, sub, frame[prev:i]))
prev = i + 1
elif i == len(frame) - 1:
new_cat[k].append((vid, sub, frame[prev:]))
cat = new_cat
for k, v in cat.items():
for vid, sub, frame in v:
for f in frame:
index = (vid, '%04d' % f, sub)
box = boxes[index]
# The order axis in AVA dataset and Tensorflow Ojbect Detection API are
# different.
box = [box[1], box[0], box[3], box[2]]
new_boxes[index] = box
return new_boxes, cat
def write_json(fp, boxes, cat, cat2):
obj = []
for k, v in cat.items():
for vid, sub, frame in v:
ref_ind = np.random.choice(len(v))
query = {}
query['id'] = vid
query['frames'] = frame
query['label'] = k
box_list = []
for f in frame:
box_list.append(boxes[(vid, '%04d' % f, sub)])
query['boxes'] = box_list
ref = {}
ref_video = v[ref_ind]
ref['id'] = ref_video[0]
ref_len = len(ref_video[2])
if ref_len < 10:
# Add some backgrounds before and after the segment.
ref['start'] = max(ref_video[2][0] - ref_len, 900)
ref['end'] = min(ref_video[2][-1] + ref_len + 1, 1800)
else:
ref['start'] = ref_video[2][0]
ref['end'] = ref_video[2][-1] + 1
gt = [[] for _ in range(ref['end'] - ref['start'])]
for i, l in enumerate(gt):
f = '%04d' % (ref['start'] + i)
if ref['start'] + i not in cat2[k][ref['id']]:
continue
subjects = cat2[k][ref['id']][ref['start'] + i]
for s in subjects:
l.append(boxes[(ref['id'], f, s)])
ref['gt'] = gt
obj.append((query, ref))
json.dump(obj, fp)
def main(_):
with open('data/val_test.json', 'r') as f:
test, val = json.load(f)
train_boxes, train_categories, train_cat2 = load_subset('train')
train_subset = filter_subset(train_boxes, train_categories, val + test)
with open('data/train.pkl', 'w') as f:
pkl.dump(train_subset, f)
val_boxes, val_categories, val_cat2 = load_subset('val')
val_subset = subset(val_boxes, val_categories, val_cat2, val)
with open('data/val.json', 'w') as f:
write_json(f, *val_subset)
test_subset = subset(val_boxes, val_categories, val_cat2, test)
with open('data/test.json', 'w') as f:
write_json(f, *test_subset)
val_subset = filter_subset(val_boxes, val_categories, val + test)
with open('data/val.pkl', 'w') as f:
pkl.dump(val_subset, f)
if __name__ == '__main__':
app.run(main)