-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathLDA.py
72 lines (64 loc) · 2.41 KB
/
LDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from sklearn import discriminant_analysis
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
class LDA:
def __init__(self):
self.omega=None
self.omiga_mu_0=None
self.omiga_mu_1=None
pass
# 《机器学习》 p61
def fit(self,X,y):
n_samples = X.shape[0]
extra = np.ones((n_samples,))
X = np.c_[X, extra]
X_0=X[np.where(y==0)]
X_1=X[np.where(y==1)]
mu_0=np.mean(X_0,axis=0)
mu_1=np.mean(X_1,axis=0)
S_omega=X_0.T.dot(X_0)+X_1.T.dot(X_1)
invS_omega=np.linalg.inv(S_omega)
self.omega=invS_omega.dot(mu_0 - mu_1)
self.omega_mu_0=self.omega.T.dot(mu_0)
self.omega_mu_1=self.omega.T.dot(mu_1)
pass
# 书上没讲怎么判断分类
# 采用距离度量,计算X到两个投影中心的L2距离,分类为距离更近的类别。
def predict_proba(self,X):
if self.omega is None:
raise RuntimeError('cant predict before fit')
n_samples = X.shape[0]
extra = np.ones((n_samples,))
X = np.c_[X, extra]
omega_mu = X.dot(self.omega)
d1=np.sqrt((omega_mu-self.omega_mu_1)**2)
d0=np.sqrt((omega_mu-self.omega_mu_0)**2)
prob_0=d1/(d0+d1)
prob_1=1-prob_0
return np.column_stack([prob_0, prob_1])
def predict(self,X):
p = self.predict_proba(X)
res = np.argmax(p, axis=1)
return res
if __name__=='__main__':
np.random.seed(42)
breast_data = load_breast_cancer()
X, y = breast_data.data, breast_data.target
X = MinMaxScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
lda = LDA()
lda.fit(X_train, y_train)
lda_prob = lda.predict_proba(X_test)
lda_pred = lda.predict(X_test)
#print('tinyml lda_prob:', lda_prob)
#print('tinyml lda_pred:', lda_pred)
print('tinyml accuracy:', len(y_test[y_test == lda_pred]) * 1. / len(y_test))
sklearn_lda = discriminant_analysis.LinearDiscriminantAnalysis()
sklearn_lda.fit(X_train,y_train)
sklearn_prob=sklearn_lda.predict_proba(X_test)
sklearn_pred=sklearn_lda.predict(X_test)
#print('sklearn prob:',sklearn_prob)
#print('sklearn pred:',sklearn_pred)
print('sklearn accuracy:',len(y_test[y_test==sklearn_pred])*1./len(y_test))