-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathGradientBoostingRegressor.py
59 lines (50 loc) · 2.08 KB
/
GradientBoostingRegressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
from sklearn import datasets
from sklearn.metrics import mean_squared_error
from sklearn import ensemble
import copy
from sklearn import tree
"""
loss使用均方误差
残差为 y-y_pred
李航《统计学习方法》 p151
"""
class GradientBoostingRegressor:
def __init__(self,base_estimator=None,n_estimators=10,lr=0.1):
self.base_estimator=base_estimator
self.n_esimators=n_estimators
self.estimators=[]
self.lr=lr
self.mean=None
def fit(self,X,y):
F0_x=np.ones_like(y)*np.mean(y)
y_pred=F0_x
self.mean=np.mean(y)
for i in range(self.n_esimators):
hm=copy.deepcopy(self.base_estimator)
hm.fit(X,y-y_pred)
self.estimators.append(hm)
y_pred=y_pred+self.lr*hm.predict(X)
def predict(self,X):
y=self.mean*np.ones((X.shape[0],))
for i in range(self.n_esimators):
y=y+self.lr*self.estimators[i].predict(X)
return y
if __name__=='__main__':
breast_data = datasets.load_boston()
X, y = breast_data.data, breast_data.target
print(X.shape)
X_train, y_train = X[:400], y[:400]
X_test, y_test = X[400:], y[400:]
sklearn_decisiontree_reg=tree.DecisionTreeRegressor(min_samples_split=15, min_samples_leaf=5,random_state=False)
sklearn_decisiontree_reg.fit(X_train, y_train)
decisiontree_pred=sklearn_decisiontree_reg.predict(X_test)
print('base estimator:',mean_squared_error(y_test,decisiontree_pred))
tinyml_gbdt_reg=GradientBoostingRegressor(n_estimators=500, base_estimator=tree.DecisionTreeRegressor(min_samples_split=15, min_samples_leaf=5, random_state=False))
tinyml_gbdt_reg.fit(X_train, y_train)
y_pred=tinyml_gbdt_reg.predict(X_test)
print('tinyml mse:',mean_squared_error(y_test,y_pred))
sklearn_gbdt_reg=ensemble.GradientBoostingRegressor(n_estimators=500,min_samples_leaf=5,min_samples_split=15,random_state=False)
sklearn_gbdt_reg.fit(X_train,y_train)
sklearn_pred=sklearn_gbdt_reg.predict(X_test)
print('sklearn mse:',mean_squared_error(y_test,sklearn_pred))