Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DQN with RGB image as input #8

Open
ghorbelm opened this issue Jun 22, 2021 · 0 comments
Open

DQN with RGB image as input #8

ghorbelm opened this issue Jun 22, 2021 · 0 comments

Comments

@ghorbelm
Copy link

ghorbelm commented Jun 22, 2021

Hello
I try to do a DQN with a RGB image.
Python code :

def build_QNetwork_RGB(n_actions, learning_rate, history_length, input_shape):
"""Builds a dueling DQN as a Keras model
Arguments:
n_actions: Number of possible action the agent can take
learning_rate: Learning rate
input_shape: Shape of the preprocessed frame the model sees
history_length: Number of historical frames the agent can see
Returns:
A compiled Keras model
"""
model_input = Input(shape=(history_length, input_shape[0], input_shape[1], input_shape[2]))
x = Lambda(lambda layer: layer / 255)(model_input) # normalize by 255
x = Conv2D(32, (8, 8), strides=4, kernel_initializer=VarianceScaling(scale=2.), activation='relu', use_bias=False)(x)
x = Conv2D(64, (4, 4), strides=2, kernel_initializer=VarianceScaling(scale=2.), activation='relu', use_bias=False)(x)
x = Conv2D(64, (3, 3), strides=1, kernel_initializer=VarianceScaling(scale=2.), activation='relu', use_bias=False)(x)
x = Conv2D(1024, (7, 7), strides=1, kernel_initializer=VarianceScaling(scale=2.), activation='relu', use_bias=False)(x)

# Split into value and advantage streams
val_stream, adv_stream = Lambda(lambda w: tf.split(w, 2, 4))(x)  # custom splitting layer

val_stream = Flatten()(val_stream)
val = Dense(1, kernel_initializer=VarianceScaling(scale=2.))(val_stream)

adv_stream = Flatten()(adv_stream)
adv = Dense(n_actions, kernel_initializer=VarianceScaling(scale=2.))(adv_stream)

# Combine streams into Q-Values
reduce_mean = Lambda(lambda w: tf.reduce_mean(w, axis=1, keepdims=True))  # custom layer for reduce mean

q_vals = Add()([val, Subtract()([adv, reduce_mean(adv)])])

# Build model
model = Model(model_input, q_vals)
model.compile(Adam(learning_rate), loss=tf.keras.losses.Huber())    

model.summary()

return model**_ 

===========================================================
when I used this function to build network :

INPUT_SHAPE = (84, 84, 3) # Size of the preprocessed input frame.
HISTORY_LENGTH = 5
Num_Actions = 4

BATCH_SIZE = 32 # Number of samples the agent learns from at once
LEARNING_RATE = 0.00001

MAIN_DQN = build_QNetwork_RGB(Num_Actions, LEARNING_RATE, HISTORY_LENGTH, INPUT_SHAPE)

===========================================================
I got :
Model: "model"


Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) [(None, 5, 84, 84, 3 0


lambda (Lambda) (None, 5, 84, 84, 3) 0 input_1[0][0]


conv2d (Conv2D) (None, 5, 20, 20, 32 6144 lambda[0][0]


conv2d_1 (Conv2D) (None, 5, 9, 9, 64) 32768 conv2d[0][0]


conv2d_2 (Conv2D) (None, 5, 7, 7, 64) 36864 conv2d_1[0][0]


conv2d_3 (Conv2D) (None, 5, 1, 1, 1024 3211264 conv2d_2[0][0]


lambda_1 (Lambda) [(None, 5, 1, 1, 512 0 conv2d_3[0][0]


flatten_1 (Flatten) (None, 2560) 0 lambda_1[0][1]


dense_1 (Dense) (None, 4) 10244 flatten_1[0][0]


flatten (Flatten) (None, 2560) 0 lambda_1[0][0]


lambda_2 (Lambda) (None, 1) 0 dense_1[0][0]


dense (Dense) (None, 1) 2561 flatten[0][0]


subtract (Subtract) (None, 4) 0 dense_1[0][0]
lambda_2[0][0]


add (Add) (None, 4) 0 dense[0][0]
subtract[0][0]

Total params: 3,299,845
Trainable params: 3,299,845
Non-trainable params: 0


I feel that this model is not well built. Do you have an idea how to correct it if this is the case?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant