-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdemo.py
188 lines (143 loc) · 6.1 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import pdb
from Models.attention_captioner import AttentionCaptioner
from Models.attention_questioner_demo import QuestionGenerator
from Models.decision_maker import DecisionMaker
from Scripts.util import masked_softmax
from Utils.util import idx2str, init_state
import random
import numpy as np
import torch
import torchvision.models as models
import skimage.io
import pickle
from torchvision import transforms as trn
preprocess = trn.Compose([
#trn.ToTensor(),
trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
from Models.Resnet.resnet_utils import myResnet
import Models.Resnet.resnet as resnet
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
SEED = 600
CAPTION_PATH = "./Data/model_checkpoints/cap_start.pth"
QUESTION_PATH = "./Data/model_checkpoints/qgen_start.pth"
DM_PATH = "./Data/model_checkpoints/dm_start.pth"
RESNET_PATH = "./Utils/checkpoints/resnet101.pth"
VOCAB_DICT_PATH = "./Data/annotation/cap_64_train.p"
def load_model(path, model_class):
save_state = torch.load(path, map_location=lambda storage, loc: storage)
model = model_class(save_state['opt']).to(device)
model.load_state_dict(save_state['state_dict'])
print '{} model loaded at {}'.format(model_class, path)
return model
captioner = load_model(CAPTION_PATH, AttentionCaptioner)
qgenerator = load_model(QUESTION_PATH, QuestionGenerator)
dmaker = load_model(DM_PATH, DecisionMaker)
d = pickle.load(open(VOCAB_DICT_PATH, "rb"))
ci2w, cw2i = d["c_dicts"][0], d["c_dicts"][1]
qi2w = d["q_dicts"][0]
net = getattr(resnet, "resnet101")()
net.load_state_dict(torch.load(RESNET_PATH))
encoder = myResnet(net)
encoder.to(device)
encoder.eval()
IMAGE_PATH = "./cat.jpg"
I = skimage.io.imread(IMAGE_PATH)
# handle grayscale input images
if len(I.shape) == 2:
I = I[:,:,np.newaxis]
I = np.concatenate((I,I,I), axis=2)
I = I.astype('float32')/255.0
I = torch.from_numpy(I.transpose([2,0,1]))
I = preprocess(I).to(device)
with torch.no_grad():
features = encoder(I, 14)
image = features[1].permute(2, 1, 0).unsqueeze(0)
# ========================================= Inference ======================================
def sample_decision(masked_prob, caption_mask, greedy=False):
batch_size = masked_prob.size(0)
zeros_mask = torch.zeros([batch_size, 17], dtype=torch.long, device=device, requires_grad=False)
if greedy:
masked_prob_copy = masked_prob.clone().detach()
val, idx = torch.max(masked_prob_copy, 1)
val, idx = val.unsqueeze(1), idx.unsqueeze(1)
else:
idx = torch.multinomial(masked_prob, 1)
val = masked_prob.gather(1, idx)
# edge-case: don't ask if probabilities are all 0s
length = torch.clamp(torch.sum(caption_mask != 0, dim=1).long().unsqueeze(1), max=16)
ask_flag = (val != 0) * (val > 0.0) * (idx != length)
ask_mask = zeros_mask.scatter(1, idx, ask_flag.long()).detach()
return [x.squeeze() for x in [val, idx, ask_flag, ask_mask]]
def pad_caption(caption, cap_len):
# replace 0's beyond caption_length in captions with pad symbol int(c_vocab_size)
range_matrix = torch.arange(17, dtype=torch.long, device=device).unsqueeze(0)
padding = range_matrix >= cap_len.unsqueeze(1).repeat(1, 17)
caption = caption + padding.long() * len(ci2w)
return caption
# train or eval
captioner.train()
qgenerator.train()
dmaker.train()
# seed
set_seed(SEED)
# get original caption
r = captioner.sample(image, greedy=True, max_seq_len=17)
caption, cap_probs, cap_mask, pos_probs, att, topk_words, attended_img \
= r.caption, r.prob, r.mask, r.pos_prob, r.attention.squeeze(), r.topk, r.atdimg
cap_len = cap_mask.long().sum(dim=1)
caption = pad_caption(caption, cap_len)
# get the hidden state context
ones_vector = torch.ones([1, 1], dtype=torch.long, device=device, requires_grad=False)
source = torch.cat([ones_vector, caption[:, :-1]], dim=1)
r = captioner(image, source, gt_pos=None, ss=False)
h = r.hidden
topk_words = [[y for y in x] for x in topk_words]
# 2. Identify the best time to ask a question, excluding ended sentences, baseline against the greedy decision
logit, valid_pos_mask = dmaker(h, attended_img, caption, cap_len,
pos_probs, topk_words, captioner.caption_embedding.weight.data)
masked_prob = masked_softmax(logit, cap_mask, valid_pos_mask, 1.0, max_len=16)
dm_prob, ask_idx, ask_flag, ask_mask = sample_decision(masked_prob, cap_mask, greedy=True)
# 3. Ask the teacher a question and get the answer
idx = ask_idx
pos_probs = pos_probs[0, idx]
h = h[0, idx]
att = att[idx]
# decision maker index vector
q_idx_vec = torch.zeros([1, 17, 256], dtype=torch.float, device=device, requires_grad=False)
q_idx_vec[0, idx, :] = 1.0
# query question generator
result = qgenerator.sample(image, caption, pos_probs.unsqueeze(0), h.unsqueeze(0), att.unsqueeze(0), q_idx_vec, greedy=True, max_seq_len=15, temperature=1.0)
question, q_logprob, q_mask = result.question, result.log_prob, result.mask
q_len = q_mask.long().sum(dim=1)
# get answer
answer = cw2i["squatting"]
answer_mask = torch.zeros([1, 17], dtype=torch.long, device=device, requires_grad=False)
answer_mask[0, idx] = answer
# get rollout caption
set_seed(SEED)
r = captioner.sample_with_teacher_answer(image, ask_mask.unsqueeze(0), answer_mask, torch.zeros([1, 1, 512], dtype=torch.float, device=device), torch.ones([1], dtype=torch.long, device=device), 17, True)
rollout, rollout_mask = r.caption, r.cap_mask
rollout_len = rollout_mask.long().sum(dim=1)
# get replace caption
replace = caption.clone()
replace[0, ask_idx] = answer
caption = caption[0, :cap_len].cpu().numpy()
rollout = rollout[0, :rollout_len].cpu().numpy()
replace = replace[0, :cap_len].cpu().numpy()
question = question[0, :q_len].cpu().numpy()
ask_idx = ask_idx.item()
caption = ' '.join(idx2str(ci2w, caption))
rollout = ' '.join(idx2str(ci2w, rollout))
replace = ' '.join(idx2str(ci2w, replace))
question = ' '.join(idx2str(qi2w, question))
print(caption)
print(rollout)
print(replace)
print(question)
print(ask_idx)