From c98ba9a7d8490424c592b09ba4a50a3bc923a773 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Sat, 30 Dec 2023 09:53:19 +0000 Subject: [PATCH] Updated papers.bib and main.pdf from academic-CV --- _bibliography/papers.bib | 38 +++++++++++++++++++------------------- assets/pdf/main.pdf | Bin 93099 -> 93092 bytes 2 files changed, 19 insertions(+), 19 deletions(-) diff --git a/_bibliography/papers.bib b/_bibliography/papers.bib index 6f6bb05..524b85f 100644 --- a/_bibliography/papers.bib +++ b/_bibliography/papers.bib @@ -4,7 +4,7 @@ @ARTICLE{2023diam_vol_entr bibtex_show={true}, abbr={ArXiv preprint}, author = {{Mazzoli}, Filippo and {Viaggi}, Gabriele}, - title = {Volume, entropy, and diameter in \({\rm SO}(p,q+1)\)-higher Teichm{\"u}ller spaces}, + title = {Volume, entropy, and diameter in \({\mathrm S \mathrm O}(p,q+1)\)-higher Teichm{\"u}ller spaces}, journal = {submitted}, keywords={preprint}, year = 2023, @@ -15,7 +15,7 @@ @ARTICLE{2023diam_vol_entr primaryClass = {math.DG}, adsurl = {https://ui.adsabs.harvard.edu/abs/2023arXiv231217137M}, adsnote = {Provided by the SAO/NASA Astrophysics Data System}, - abstract = {We investigate properties of the pseudo-Riemannian volume, entropy, and diameter for convex cocompact representations \(\rho : \Gamma \to {\rm SO}(p,q+1)\) of closed \(p\)-manifold groups. In particular: We provide a uniform lower bound of the product entropy times volume that depends only on the geometry of the abstract group \(\Gamma\). We prove that the entropy is bounded from above by \(p-1\) with equality if and only if \(\rho\) is conjugate to a representation inside \({\rm S}({\rm O}(p,1)\times{\rm O}(q))\), which answers affirmatively to a question of Glorieux and Monclair. Lastly, we prove finiteness and compactness results for groups admitting convex cocompact representations with bounded diameter.}, + abstract = {We investigate properties of the pseudo-Riemannian volume, entropy, and diameter for convex cocompact representations \(\rho : \Gamma \to {\mathrm S \mathrm O}(p,q+1)\) of closed \(p\)-manifold groups. In particular: We provide a uniform lower bound of the product entropy times volume that depends only on the geometry of the abstract group \(\Gamma\). We prove that the entropy is bounded from above by \(p-1\) with equality if and only if \(\rho\) is conjugate to a representation inside \({\mathrm S}({\mathrm O}(p,1)\times{\mathrm O}(q))\), which answers affirmatively to a question of Glorieux and Monclair. Lastly, we prove finiteness and compactness results for groups admitting convex cocompact representations with bounded diameter.}, html= {https://arxiv.org/abs/2312.17137}, } @@ -23,7 +23,7 @@ @ARTICLE{2019constantgaussian bibtex_show={true}, abbr={ArXiv preprint}, author = {{Mazzoli}, Filippo}, - title = "{Constant Gaussian curvature foliations and Schl{\"a}fli formulas of hyperbolic \(3\,\)-manifolds}", + title = "{Constant Gaussian curvature foliations and Schl{\"a}fli formulas of hyperbolic \(3\)-manifolds}", journal = {to appear in Ann. Sc. norm. super. Pisa - Cl. sci.}, keywords={accepted}, year = 2019, @@ -34,7 +34,7 @@ @ARTICLE{2019constantgaussian primaryClass = {math.DG}, adsurl = {https://ui.adsabs.harvard.edu/abs/2019arXiv191006203M}, adsnote = {Provided by the SAO/NASA Astrophysics Data System}, - abstract = {We study the geometry of the foliation by constant Gaussian curvature surfaces \((\Sigma_k)_k\,\,\) of a hyperbolic end, and how it relates to the structures of its boundary at infinity and of its pleated boundary. First, we show that the Thurston and the Schwarzian parametrizations are the limits of two families of parametrizations of the space of hyperbolic ends, defined by Labourie in 1992 in terms of the geometry of the leaves \(\Sigma_k\,\). We give a new description of the renormalized volume using the constant curvature foliation. We prove a generalization of McMullen's Kleinian reciprocity theorem, which replaces the role of the Schwarzian parametrization with Labourie's parametrizations. Finally, we describe the constant curvature foliation of a hyperbolic end as the integral curve of a time-dependent Hamiltonian vector field on the cotangent space to Teichmüller space, in analogy to the Moncrief flow for constant mean curvature foliations in Lorenzian space-times.}, + abstract = {We study the geometry of the foliation by constant Gaussian curvature surfaces \((\Sigma_k)_k\,\,\) of a hyperbolic end, and how it relates to the structures of its boundary at infinity and of its pleated boundary. First, we show that the Thurston and the Schwarzian parametrizations are the limits of two families of parametrizations of the space of hyperbolic ends, defined by Labourie in 1992 in terms of the geometry of the leaves \(\Sigma_k\). We give a new description of the renormalized volume using the constant curvature foliation. We prove a generalization of McMullen's Kleinian reciprocity theorem, which replaces the role of the Schwarzian parametrization with Labourie's parametrizations. Finally, we describe the constant curvature foliation of a hyperbolic end as the integral curve of a time-dependent Hamiltonian vector field on the cotangent space to Teichmüller space, in analogy to the Moncrief flow for constant mean curvature foliations in Lorenzian space-times.}, html= {https://arxiv.org/abs/1910.06203}, } @@ -42,11 +42,11 @@ @ARTICLE{2021infimum bibtex_show={true}, abbr={Geom. Topol.}, author = {{Mazzoli}, Filippo}, - title = "{The infimum of the dual volume of convex co-compact hyperbolic \(3\,\)-manifolds}", + title = "{The infimum of the dual volume of convex co-compact hyperbolic \(3\)-manifolds}", journal = {Geom. Topol.}, fjournal = {Geometry {\&} Topology}, year = {2023}, - month = {8}, + month = aug, volume = {27}, number = {6}, pages = {2319--2346}, @@ -55,7 +55,7 @@ @ARTICLE{2021infimum url = {https://doi.org/10.2140/gt.2023.27.2319}, adsurl = {https://ui.adsabs.harvard.edu/abs/2021arXiv210109380M}, adsnote = {Provided by the SAO/NASA Astrophysics Data System}, - abstract = {We show that the infimum of the dual volume of the convex core of a convex co-compact hyperbolic \(3\,\)-manifold with incompressible boundary coincides with the infimum of the Riemannian volume of its convex core, as we vary the geometry by quasi-isometric deformations. We deduce a linear lower bound of the volume of the convex core of a quasi-Fuchsian manifold in terms of the length of its bending measured lamination, with optimal multiplicative constant.}, + abstract = {We show that the infimum of the dual volume of the convex core of a convex co-compact hyperbolic \(3\)-manifold with incompressible boundary coincides with the infimum of the Riemannian volume of its convex core, as we vary the geometry by quasi-isometric deformations. We deduce a linear lower bound of the volume of the convex core of a quasi-Fuchsian manifold in terms of the length of its bending measured lamination, with optimal multiplicative constant.}, html = {https://doi.org/10.2140/gt.2023.27.2319}, keywords={published}, } @@ -75,7 +75,7 @@ @ARTICLE{2021parahyperkahler primaryClass = {math.DG}, adsurl = {https://ui.adsabs.harvard.edu/abs/2021arXiv210710363M}, adsnote = {Provided by the SAO/NASA Astrophysics Data System}, - abstract = {In this paper we study the para-hyperKähler geometry of the deformation space of MGHC anti-de Sitter structures on \(\Sigma\times{\mathbb R}\,\), for \(\Sigma\,\,\) a closed oriented surface. We show that a neutral pseudo-Riemannian metric and three symplectic structures coexist with an integrable complex structure and two para-complex structures, satisfying the relations of para-quaternionic numbers. We show that these structures are directly related to the geometry of MGHC manifolds, via the Mess homeomorphism, the parameterization of Krasnov-Schlenker by the induced metric on \(K\,\)-surfaces, the identification with the cotangent bundle \(T^*{\mathcal T}(\Sigma) \), and the circle action that arises from this identification. Finally, we study the relation to the natural para-complex geometry that the space inherits from being a component of the \({\mathrm P} {\mathrm S} {\mathrm L}(2,{\mathbb B})\,\)-character variety, where \({\mathbb B}\,\,\) is the algebra of para-complex numbers, and the symplectic geometry deriving from Goldman symplectic form.}, + abstract = {In this paper we study the para-hyperKähler geometry of the deformation space of MGHC anti-de Sitter structures on \(\Sigma\times{\mathbb R}\), for \(\Sigma\,\,\) a closed oriented surface. We show that a neutral pseudo-Riemannian metric and three symplectic structures coexist with an integrable complex structure and two para-complex structures, satisfying the relations of para-quaternionic numbers. We show that these structures are directly related to the geometry of MGHC manifolds, via the Mess homeomorphism, the parameterization of Krasnov-Schlenker by the induced metric on \(K\)-surfaces, the identification with the cotangent bundle \(T^*{\mathcal T}(\Sigma) \), and the circle action that arises from this identification. Finally, we study the relation to the natural para-complex geometry that the space inherits from being a component of the \({\mathrm P} {\mathrm S} {\mathrm L}(2,{\mathbb B})\)-character variety, where \({\mathbb B}\,\,\) is the algebra of para-complex numbers, and the symplectic geometry deriving from Goldman symplectic form.}, html= {https://arxiv.org/abs/2107.10363}, keywords={accepted}, } @@ -85,7 +85,7 @@ @ARTICLE{2022maximalreprs bibtex_show={true}, abbr={ArXiv preprint}, author = {{Mazzoli}, Filippo and {Viaggi}, Gabriele}, - title = "{\({\mathrm S \mathrm O}_0(2,n+1)\,\)-maximal representations and hyperbolic surfaces}", + title = "{\({\mathrm S \mathrm O}_0(2,n+1)\)-maximal representations and hyperbolic surfaces}", journal = {to appear in Mem. Amer. Math. Soc.}, keywords={accepted}, year = 2022, @@ -97,9 +97,9 @@ @ARTICLE{2022maximalreprs adsurl = {https://ui.adsabs.harvard.edu/abs/2022arXiv220606946M}, adsnote = {Provided by the SAO/NASA Astrophysics Data System}, abstract = {We study maximal representations of surface groups - \(\rho : \pi_1(\Sigma)\to{\mathrm S}{\mathrm O}(2,n+1)\,\,\) via the introduction of \(\rho\,\)-invariant pleated surfaces inside the pseudo-Riemannian space \({\mathbb H}^{2,n}\,\,\) associated to maximal geodesic laminations of \(\Sigma\,\). - We prove that \(\rho\,\)-invariant pleated surfaces are always embedded, acausal, and possess an intrinsic pseudo-metric and a hyperbolic structure. We describe the latter by constructing a shear cocycle from the cross ratio naturally associated to \(\rho\,\). The process developed to this purpose applies to a wide class of cross ratios, including examples arising from Hitchin and \(\Theta\,\)-positive representations in \({\mathrm S}{\mathrm O}(p,q)\,\). We also show that the length spectrum of \(\rho\,\,\) dominates the ones of \(\rho\,\)-invariant pleated surfaces, with strict inequality exactly on curves that intersect the bending locus. - We observe that the canonical decomposition of a \(\rho\,\,\)-invariant pleated surface into leaves and plaques corresponds to a decomposition of the Guichard-Wienhard domain of discontinuity of \(\rho\,\,\) into standard fibered blocks, namely triangles and lines of photons. Conversely, we give a concrete construction of photon manifolds fibering over hyperbolic surfaces by gluing together triangles of photons. + \(\rho : \pi_1(\Sigma)\to{\mathrm S}{\mathrm O}(2,n+1)\,\,\) via the introduction of \(\rho\)-invariant pleated surfaces inside the pseudo-Riemannian space \({\mathbb H}^{2,n}\,\,\) associated to maximal geodesic laminations of \(\Sigma\). + We prove that \(\rho\)-invariant pleated surfaces are always embedded, acausal, and possess an intrinsic pseudo-metric and a hyperbolic structure. We describe the latter by constructing a shear cocycle from the cross ratio naturally associated to \(\rho\). The process developed to this purpose applies to a wide class of cross ratios, including examples arising from Hitchin and \(\Theta\)-positive representations in \({\mathrm S}{\mathrm O}(p,q)\). We also show that the length spectrum of \(\rho\,\,\) dominates the ones of \(\rho\)-invariant pleated surfaces, with strict inequality exactly on curves that intersect the bending locus. + We observe that the canonical decomposition of a \(\rho\)-invariant pleated surface into leaves and plaques corresponds to a decomposition of the Guichard-Wienhard domain of discontinuity of \(\rho\,\,\) into standard fibered blocks, namely triangles and lines of photons. Conversely, we give a concrete construction of photon manifolds fibering over hyperbolic surfaces by gluing together triangles of photons. The tools we develop allow to recover various results by Collier, Tholozan, and Toulisse on the (pseudo-Riemannian) geometry of \(\rho\,\,\) and on the correspondence between maximal representations and fibered photon manifolds through a constructive and geometric approach, bypassing the use of Higgs bundles.}, html= {https://arxiv.org/abs/2206.06946}, @@ -117,14 +117,14 @@ @article {2022lengths FJOURNAL = {Forum of Mathematics. Sigma}, VOLUME = {11}, YEAR = {2023}, - month = {11}, + month = nov, PAGES = {Paper No. e101}, ISSN = {2050-5094}, MRCLASS = {57K20 (57K32)}, MRNUMBER = {4668539}, DOI = {10.1017/fms.2023.100}, URL = {https://doi.org/10.1017/fms.2023.100}, - abstract = {We establish a link between the behavior of length functions on Teichmüller space and the geometry of certain anti de Sitter \(3\,\)-manifolds. As an application, we give new purely anti de Sitter proofs of results of Teichmüller theory such as (strict) convexity of length functions along shear paths and geometric bounds on their second variation along earthquakes. Along the way, we provide shear-bend coordinates for Mess' anti de Sitter \(3\,\)-manifolds.}, + abstract = {We establish a link between the behavior of length functions on Teichmüller space and the geometry of certain anti de Sitter \(3\)-manifolds. As an application, we give new purely anti de Sitter proofs of results of Teichmüller theory such as (strict) convexity of length functions along shear paths and geometric bounds on their second variation along earthquakes. Along the way, we provide shear-bend coordinates for Mess' anti de Sitter \(3\)-manifolds.}, html= {https://arxiv.org/abs/2212.11106}, keywords={published}, } @@ -135,14 +135,14 @@ @ARTICLE{2023cmcfoliations author = {Choudhury, Diptaishik and Mazzoli, Filippo and Seppi, Andrea}, title = {Quasi-Fuchsian manifolds close to the Fuchsian locus are foliated by constant mean curvature surfaces}, year = {2023}, - month = {4}, + month = apr, journal = {Math. Ann.}, fjournal = {Mathematische Annalen}, doi = {10.1007/s00208-023-02625-7}, url = {https://doi.org/10.1007/s00208-023-02625-7}, issn = {1432-1807}, source = {Scopus}, - abstract = {Even though it is known that there exist quasi-Fuchsian hyperbolic three-manifolds that do not admit any monotone foliation by constant mean curvature (CMC) surfaces, a conjecture due to Thurston asserts the existence of CMC foliations for all almost-Fuchsian manifolds, namely those quasi-Fuchsian manifolds that contain a closed minimal surface with principal curvatures in \((-1,1)\,\). In this paper we prove that there exists a (unique) monotone CMC foliation for all quasi-Fuchsian manifolds that lie in a sufficiently small neighborhood of the Fuchsian locus.}, + abstract = {Even though it is known that there exist quasi-Fuchsian hyperbolic three-manifolds that do not admit any monotone foliation by constant mean curvature (CMC) surfaces, a conjecture due to Thurston asserts the existence of CMC foliations for all almost-Fuchsian manifolds, namely those quasi-Fuchsian manifolds that contain a closed minimal surface with principal curvatures in \((-1,1)\). In this paper we prove that there exists a (unique) monotone CMC foliation for all quasi-Fuchsian manifolds that lie in a sufficiently small neighborhood of the Fuchsian locus.}, arxiv={2204.05736}, html= {https://link.springer.com/article/10.1007/s00208-023-02625-7}, keywords={published}, @@ -186,7 +186,7 @@ @ARTICLE{2023pleated primaryClass = {math.GT}, adsurl = {https://ui.adsabs.harvard.edu/abs/2023arXiv230511780M}, adsnote = {Provided by the SAO/NASA Astrophysics Data System}, - abstract = {In this article, we single out representations of surface groups into \({\mathsf P \mathsf S \mathsf L}_d({\mathbb C})\,\,\) which generalize the well-studied family of pleated surfaces into \({\mathsf P \mathsf S \mathsf L}_2({\mathbb C})\). Our representations arise as sufficiently generic \(\lambda \,\)-Borel Anosov representations, which are representations that are Borel Anosov with respect to a maximal geodesic lamination \(\lambda\). For fixed \(\lambda\,\,\) and \(d \,\), we provide a holomorphic parametrization of the space \({\mathcal R}(\lambda,d)\,\, \) of \((\lambda,d)\,\)-pleated surfaces which extends both work of Bonahon for pleated surfaces and Bonahon and Dreyer for Hitchin representations.}, + abstract = {In this article, we single out representations of surface groups into \({\mathsf P \mathsf S \mathsf L}_d({\mathbb C})\,\,\) which generalize the well-studied family of pleated surfaces into \({\mathsf P \mathsf S \mathsf L}_2({\mathbb C})\). Our representations arise as sufficiently generic \(\lambda\)-Borel Anosov representations, which are representations that are Borel Anosov with respect to a maximal geodesic lamination \(\lambda\). For fixed \(\lambda\,\,\) and \(d \), we provide a holomorphic parametrization of the space \({\mathcal R}(\lambda,d)\,\, \) of \((\lambda,d)\)-pleated surfaces which extends both work of Bonahon for pleated surfaces and Bonahon and Dreyer for Hitchin representations.}, html={https://arxiv.org/abs/2305.11780}, keywords={preprint}, } @@ -209,7 +209,7 @@ @article {2021dualBS MRREVIEWER = {Mattia\ Mecchia}, DOI = {10.2140/agt.2021.21.279}, URL = {https://doi.org/10.2140/agt.2021.21.279}, - abstract={Given a differentiable deformation of geometrically finite hyperbolic \(3\)–manifolds \((M_t)_t\), the Bonahon–Schläfli formula (J. Differential Geom. 50 (1998) 25–58) expresses the derivative of the volume of the convex cores \((C M_t)_t\,\,\) in terms of the variation of the geometry of their boundaries, as the classical Schläfli formula (Q. J. Pure Appl. Math. 168 (1858) 269–301) does for the volume of hyperbolic polyhedra. Here we study the analogous problem for the dual volume, a notion that arises from the polarity relation between the hyperbolic space \({\mathbb H}^3\,\,\) and the de Sitter space \({\mathrm d}{\mathbb S}^3\). The corresponding dual Bonahon–Schläfli formula has been originally deduced from Bonahon’s work by Krasnov and Schlenker (Duke Math. J. 150 (2009) 331–356). Applying the differential Schläfli formula (Electron. Res. Announc. Amer. Math. Soc. 5 (1999) 18–23) and the properties of the dual volume, we give a (almost) self-contained proof of the dual Bonahon–Schläfli formula, without making use of Bonahon’s results.}, + abstract={Given a differentiable deformation of geometrically finite hyperbolic \(3\)–manifolds \((M_t)_t\), the Bonahon–Schläfli formula (J. Differential Geom. 50 (1998) 25–58) expresses the derivative of the volume of the convex cores \((C M_t)_t\,\,\) in terms of the variation of the geometry of their boundaries, as the classical Schläfli formula (Q. J. Pure Appl. Math. 168 (1858) 269–301) does for the volume of hyperbolic polyhedra. Here we study the analogous problem for the dual volume, a notion that arises from the polarity relation between the hyperbolic space \({\mathbb H}^3\,\,\) and the de Sitter space \({\mathrm d}{\mathbb S}^3\). The corresponding dual Bonahon–Schläfli formula has been originally deduced from Bonahon’s work by Krasnov and Schlenker (Duke Math. J. 150 (2009) 331–356). Applying the differential Schläfli formula (Electron. Res. Announc. Amer. Math. Soc. 5 (1999) 18–23) and the properties of the dual volume, we give a (almost) self-contained proof of the dual Bonahon–Schläfli formula, without making use of Bonahon’s results.}, html={https://msp.org/agt/2021/21-1/p07.xhtml}, arxiv={1808.08936}, keywords={published}, @@ -229,7 +229,7 @@ @ARTICLE{2016intertwining primaryClass = {math.GT}, adsurl = {https://ui.adsabs.harvard.edu/abs/2016arXiv161006056M}, adsnote = {Provided by the SAO/NASA Astrophysics Data System}, - abstract= {In arXiv:0707.2151 the authors introduced the theory of local representations of the quantum Teichmüller space \(\mathcal T^q_S \,\) (\(q\,\,\) being a fixed primitive \(N \,\)-th root of \( (-1)^{N + 1}\, \)) and they studied the behaviour of the intertwining operators in this theory. One of the main results [Theorem 20, arXiv:0707.2151] was the possibility to select one distinguished operator (up to scalar multiplication) for every choice of a surface \(S\,\), ideal triangulations \(\lambda, \lambda'\,\,\) and isomorphic local representations \(\rho, \rho' \,\), requiring that the whole family of operators verifies certain Fusion and Composition properties. By analyzing the constructions of arXiv:0707.2151, we found a difficulty that we eventually fix by a slightly weaker (but actually optimal) selection procedure. In fact, for every choice of a surface \(S\,\), ideal triangulations \(\lambda, \lambda'\,\,\) and isomorphic local representations \(\rho, \rho' \,\), we select a finite set of intertwining operators, naturally endowed with a structure of affine space over \(H_1(S;{\mathbb Z}_N) \,\) (\({\mathbb Z}_N \,\,\) is the cyclic group of order \(N\)), in such a way that the whole family of operators verifies augmented Fusion and Composition properties, which incorporate the explicit behavior of the \({\mathbb Z}_N \,\)-actions with respect to such properties. Moreover, this family is minimal among the collections of operators verifying the weak Fusion and Composition rules (in practice the ones considered in arXiv:0707.2151). In addition, we adapt the derivation of the invariants for pseudo-Anosov diffeomorphisms and their hyperbolic mapping tori made in arXiv:0707.2151 and arXiv:math/0407086 by using our distinguished family of intertwining operators.}, + abstract= {In arXiv:0707.2151 the authors introduced the theory of local representations of the quantum Teichmüller space \(\mathcal T^q_S \,\) (\(q\,\,\) being a fixed primitive \(N\)-th root of \( (-1)^{N + 1} \)) and they studied the behaviour of the intertwining operators in this theory. One of the main results [Theorem 20, arXiv:0707.2151] was the possibility to select one distinguished operator (up to scalar multiplication) for every choice of a surface \(S\), ideal triangulations \(\lambda, \lambda'\,\,\) and isomorphic local representations \(\rho, \rho'\), requiring that the whole family of operators verifies certain Fusion and Composition properties. By analyzing the constructions of arXiv:0707.2151, we found a difficulty that we eventually fix by a slightly weaker (but actually optimal) selection procedure. In fact, for every choice of a surface \(S\), ideal triangulations \(\lambda, \lambda'\,\,\) and isomorphic local representations \(\rho, \rho'\), we select a finite set of intertwining operators, naturally endowed with a structure of affine space over \(H_1(S;{\mathbb Z}_N) \,\) (\({\mathbb Z}_N \,\,\) is the cyclic group of order \(N\)), in such a way that the whole family of operators verifies augmented Fusion and Composition properties, which incorporate the explicit behavior of the \({\mathbb Z}_N\)-actions with respect to such properties. Moreover, this family is minimal among the collections of operators verifying the weak Fusion and Composition rules (in practice the ones considered in arXiv:0707.2151). In addition, we adapt the derivation of the invariants for pseudo-Anosov diffeomorphisms and their hyperbolic mapping tori made in arXiv:0707.2151 and arXiv:math/0407086 by using our distinguished family of intertwining operators.}, html={https://arxiv.org/abs/1610.06056}, keywords={preprint}, } diff --git a/assets/pdf/main.pdf b/assets/pdf/main.pdf index 7a28c224855bd49e2dac224cae2acd94fae3405e..f1eef5633befd0f355402deca3e05324a9d9eed5 100644 GIT binary patch delta 16400 zcmajFV{j!v+btS%y{oX&fs{2pZQ`J?g zS3g`;%aA3@kO^F%9EIHQ0BO}h5IVW+i-G;j%3ZgZW@m8x&C6Ge?{e_z>Djm+0Sd2e z0VxDMlkjvR3A_A0Jo}m}&4Md3Wqudd357XOz!s^$I93rMdIAn4 z>~7rbI$n8*JdkQ!W+Udu@+6&d>g2xuwmsPptE zh3jt)`Z+rlY2)CBTpJ2eEKgUWax$Ik3|c>%`h}AsB0QG3LM!&LCde{w9)utvbAR+; z_8JGox1$6zJV^fIWKM)1fUcj_Z!oC2b=VE@^n6x4v1K)@9Dkmmmgh+ z;67jW8++$J3T>fZ%}oBT`sy zDkR?~F2>?nk6b2;4q~E9#8ew4BS#eGeOP5B*=Ng!?=_02>gTYL05pH}KQ})%9a7bg zQ42h3=zO{3>zkYKU_PD2U?e7ADef+67Y463-4Gij@48_-K?9xGf&I;ZR{(_OAEh4# zzev{oG`AHcYE0~LV1D_M^f(X(^=8RA@lQ1L0HY30^R;pJ z_X4fK=+F^{(8XU&7xed5pYHzfsb#-d5QgnA@c%x<05MoV0vJC1Wqsfdg6q7+VfKS{ zg8SDu;4HYpT3QA_Pc5txX;9jcZh>s1~nT~d>-$s;L&God+)W`ore*~ z|7jJ*N?@wOTSi&)qps(iC4SgrIVZ0bcI;MC?Qvs@l@HuSO1@}HwuT}%v{H~w?=JKY zMXvlY@0q8o1U>feYd%?+2VDU+LMea5{1aJ!(S0KVe~~Ul%q7!{iecjosS?0<=QkL0 zMW=P69ij+0V9YQfo_-I&?`6gKXVWCyo4|vNcu51E=mBOBhg;;$O-Hhg$w&lOv_o=< z%?RmFXy^@`#0M>cxay0Q92f`+DE&NF;Vth( z6v!waCoxHcbbuMFk-5_^Nu@cX5K&Yvx?bI?EtnI8O(E6(=-tEXTHzt(SZP9SKjlR& z_a%3Kc8tqkRLxCb$T(!=NUHPj^E=9~aMaYBQjq?#djx7axFJNTz<@#YgrBURHGLUB zyM*eR0Q~%&u;m2glh_MZ@ve^u^NVu1c7*(s$wHZRRecVBYsKC_>h}0W%*2^0p_>up z2}3;n2T*XdA|lb+cLTx%N`OvBx%0YnU_?KV;Y^A=pov2NQri3pU4aD+M2u~o3D-iX z!3B0hAVVNBY(OFxVBmHVr8{HU&RS)7aEm2x0JNEHGR0mZjGvdcr}Um;?b+PpOsw&7 zb>1%S^RVYhnXkDskAP!FG8blntKhVrv872e`KYWX68f2_RlWlABn|RxiLoXY5Css^ z+keIGNPbChpzjFjBOjD0=2KD?i{Bh(3Vt5P=Oc}`EB5;4O&x|9^W2_3=Odl$3RL6^ z0DwlYI8J@p4{c&0)XeE&7?;Y2HncTrb7?0lzoFdmcJ-jsc_UDo6J+GIW^#8Db|Iy+ zRXjq{3HoM;Ah7%4g3-SV$WW!MIRX+v_EtbhL-~|M2sDN~VO_zzO}e#5^dpQzDNsmQ z?_NrNFw2B^F`6Ktb$QmADlC>{u29~`0XlwFywMX}doq9E!a3FbEgUkyc22bbeb4E$ zkPaa3B{sNNT&K_A@$H%S2-Lb0p=jcM~$q!3DR`EC%LSo{4Pl+2A&nmmmtscN0LtyvM9el8hRBxc2>{V% zic3%;YZF3JJ<6#^BK9# zr`p#x$Wkjw9^g9Juba;-e_Dy|SeIKHDo*M5Apfqza&Ct^;m8-?blIfUn#)f z@_F>#XbBTGZHE6d_espfE#-lns;*r-{-r4TcDz?SYu&ZHzY+1{Gu<{;UC zOfA34mJvf}>U)>djyor{>R7stTg(^U5nCAPyk0GHnmy7AmlM#T?xzymZb<)!+;|C_ z)V$#rb9y}*%`Vs*xfNuqEC3$h3bSRyn2En&rah+aB4@-XM@kX5_OmR$<@HpSG|8*y!7?L$HxqB&}S!;4UD}2&7y6>24U;|Ysv)^i1R$9OrYi3o|E@;ddQH; z5!Ci_yIn`y5#BidA>!87(i@#xZEro32lOQa=N+oV^~ zh;gI!lz7iIdtaJ4AFiwkPHbpdEEQG%WeV(MET5J&#$I&00#Nn185_Z0*|@JwRnFsQ z4CR1#R8AtLp60qiJFsub(|Q$-8;T4`D?}}0=(=Ba5E`&(wwTqJc+yvQO>Qk;wAwK= z7oFIgx2@S!S^168jDgKAWebun;7liN2QpcDjAC{hgs4=qDqh)D2(^r@O!{(#S?qYi<41vnpSQuUgz4UC@-W+(TJ0lsJQQht|~R z3(0x5g}BD@i}fLO7l{$ZjX={hJ(EfPt>WsN8gI%Nfa@p#J?-PbWba+k;0YndA)xil z*JMurs3QV_p`F3Qgh`3C0!>+JI(|d7RO9pE;Arn~Y)5{6kPU8g9g)64YJJAo`@US9 zuhdc*)~WtBuSrW)UeEO?63BeQJ{C3 zz2jm$AV=A*+o!|>y#%M`hv&iXVyqIBcCKHi;LJrLCA3l<)iNnOkZ=^g72Zj#N#%R~ zG9=byhRycK&efd^$ji9dxKOOz>;0^I86*a?Jd$yoMW>_x;&L;!lpfMNW7IL#<^ElsK_RWaW#Ea0HnlS60#JKAPRmblGMj!#n{04#5MGfi^d?ES zpW1-0+@$JD9g0BV|scw(GR@-Wqb0txBfEcOtxtw4kwO6G&gG`%6Av z5Wx6)H%VX>yhIwCcn3{J&Ju1ieo4Js2?h5aUtshv>?Fc9r||f^)1s2EyK5msHWveb z7}tjf>jf^9S)u*zz8B}&ztmSVqcy$~gU+Yu7A^JE6tdHwEY$tV+83C=H$s)1I#J|< zrwgG~)-+D4F6n*D+3yZ0{&Jet{N!|7paYnh6e>QTpNuz}aO@Ra1G^^Gw0z8D(HUUv z-S=tM=b|!2?Wif$%jI7$Jl$mjU6MSj1^i?D99#|pe{7V^ zIVw$^h~1p|wbgic?n%J4XKg?8RFRjRe{`JBGOvN2bzyRSLrI5YIK0gn7E&UHv;u6_ zvF#fu>^fF#9u4ia4@$@*(3r_%laEX{+ZDzy%t()_$FCIp_K&VM?&}=dcVh|h5|}ZX zdI?5<3Of%!U32^{aa7o~(4Q@K01q@rNxh zC19MfMZHu+ScG#IEl~M&=0<8AdB2PJnl|DPYJ1pohfmu#0c3=NVKL-i_SEj*P*k0FROLqG?ehff-{V>5X z#{?Y)t(RPEx73Hz47mb_vGPN=<(X^wryadILv*yALJtI?JN^P4>46e15H8OOQ5d(> znHR6d(ru~kfh|UDUAkVh&u{*O$;z}{SK={kv&i)sJ$obp}_GWon=x-NX5GgJ$x!vYXvCYIf+tPSTIDb zeNXXrmM8n`>FYVTI>=i+fE4=hrg9#4JzZx#=JNeftJ>J)G1FSQJY1fFe|_ZU4M-s* zzdgt7M_0cX>P;V;{pq{!`y%&|_bWqA(s9}rjS3!{@7cdg;RE?+_w%>cb$I*PC)Z&E z&NFN?jV|jjDnH3vixvRHtkW$2J~7X$I!r(Jfb*j3uW{EWq6fM;{dwHnMA8Nt@OolM z7SU)99{E!cED>|^<@BS6*&4KdTdqq!)V#U3x(>;L1Ew0fUNK6xfpIV1ZT|T;+299UZNlY`n9%MIK7IpTXikku>roI0|wvj6DELxBAuzQOr?&|nRr}rfU z#4`hbnALYdQoeT)qs>`>o@njr*e8?-c)M^a2)&zk@rQ_eYDL~V3jQ;}MMk|o>zJdB zD$|p8Zzw+#K_B2&kKk0a!5U17(ok5}+F`&fW8IMHs@uE8*OwPX{6gqK>LukU<2O&- zrccvjY8db2(#D2STvYDX1jrtDqvHnkxl%FXI<7v8*O8U8TgJauOqFB)K2Z`<#|jdA9C^~E0fmAm{m z&9L2ec3=M^8_tE38P#JWmry)sdnY?;#nv@G!tmB6J(}Bp{Y0t?EPb*!^|QD75$-3R zo5hX5bWBZmhT6pFV@+;RH|AC%c=X!lq?+6-%o+&kvaa`6HpeJ!C|#ewms4ogA6~H9 zd@5GObrJsS7V|6QP9t0Qs0DLEqun__{ET;nFoh{rx4X?wzZysYxfA$8RB)qru`{Gc zFwby2b5y;xq2_j^H1&ZRtT;*-7Q3++J$kT-;(9}=r043HZ^)^Kr5hb|4 z+*AkDYRV^TomDQ#3aa(@C4L65K^{ZXs&MJ(yoylzw&m>XFbZZT;-dCppKJ?9bfb9Mu;mn@Hdz-bH7J$_DGrvUh<{y$ z5SJSYR(_*9fE#5S<%9q6<7$mVA#~*{XwjaFe{w~gp6@chy(Wq={8xM@nxQ4j$x{JX z{ui;5^=(U-(Ekw&qy3@*oqbl!7@2K4plOrd)~7x_&cY(}O?bFH17OJS$U}#rMhNuu zjjye0zt+M~Yo8>C_>!+puHbdOWD&o||>)Y>40DG`;kN?~I zhtB6hG6BVUjBGU#;5*~~vA90|+A&Uk3J@=+P<|(XYNQwZ`fn{ z(AJ9Rmb~P>>HE{V$MDmBCV$s?R?ot+_ZL$z4i=`Dw#2Cj+loSN`=q?>lEC!vI^=n3 z{ibm@3ovGrvr`JigRl7;SN6)+9Vv)vl4CCp!U`!WatSLDKoXT}DMKckK%s)FhWeY~ zN=PkC%o!v~2wyEg$uFMHxk(wjgcx>QcmX~hj6|B%DH2X40G$e~P*ED~7Gm)?M4@72 z4y;8wtTK%d8$A%IAgJ6)n{8CRV6|Oh*+o%}2QN1ShB+8csE(Qkwm(r77TJz`kE@b4 zODY0F3@vg+Z%7)MLIv*NjGQ>9xhOKkEstASWeaGYnlLZ(@;is|_ispPV)~nWv7IjC zIo5{>xcea;xvhh2J z`~O&k&5CJfrt5e|2;`z*{IW_(L-b+g3RE(!VvFV^PQ8II(skQtpnBhV`pX+~;`Jq9 zSObLaC-;!S-t66Q6#sxi%?4z8;?e)L=r=cr?H;LFhz%q&2AN$pTleAodqylDt7z=$ zj+#41|L00uJlm%335$1uaEVTSj3F-=mbAWAuVBAJJnc`J^iS$iX&jr^>rZ!$#n_kK zxRs$nfy?byYoT@0LSIFzbhNeHQR`UB3Hyj(FTfr-Q}FJG`*ywLC?-zkxr5J&VL?PZ*- ze=3yv`F3+VnR83t;;tP3`FAhh-$v2FINkrEt5e={o5#ar**~Vu=pXk3Pc{*!@Q0ox zS&6dy>t9}uAK!1EHF;l+@1_84zP7%sa;DFEj8l@^0=>QJdX3ZiOsAL3ycA%|L#NKV z8%pu%k(bXXrnj~1BlfpQPbr@BtA49J-EY&c{#^}ao<2p4W$%1|w*FXn*&@1PCw%o5 z)nf5UN*ab=e7LJ>7Mqd|mB)L+@jd9aW?Ygmy*+;KQ}8%U8{au&4{BWZp# z>4*y9pQWI}6@>>k1=N5j-)gSE` zxT!cUvBQ|?xDW!3djJR;674Tc2ZdvUi6zGDy*I@FGjzc^zn9Tb%c8#5V9N5)Bu z+*C~>A%0|2$zJHUzmviKP?pf$Ol|tp%WLUMMk&@;dgEf=FJ(>%-j22GDyf{44Q$2~ z5l;1QycH4)WV>Tn-` zq=-Nl_0zMh;^pvy1|4P|^4D|SK(nXkZIZQ5(emwj+57>nD< zfd9&Z^rMUa-(Zzvj)S`&iAxoP=1zTap;>m(yx2tgM_I*Z7SQ`k!2^c2>Bee$EE_tW z*RLGWLu=(KJiDV?-^|7J@cYWjMx7ZV9;%KGuIriX6N_R# zJqD2LoagFd!%yG*>9DD}jGI2^PVHLhu87WoDa6)AZGa-npmGYC1PEkMWofcRRQVLt zR|cH94hU+>J9jwgHv%@5EEIJyfAiQBWd*AQm&#;(=^?QcokOvdjuIZ}3fVJi>ShYG zBo*76!9ILl%h?@yh6ECdSvRjK)`lu;L6dfX-;RS>$%qM%zmFk zBfHl9t$s$Cch%o*!+jA*z<=@JSc5W|#tvu;BHH||RiNQfd#2{l+KXR(IjXifN zN3aY5ow#ulqbMHnl|NEFX5XMGQ!rIj(v0zADVc|ymk31X$55mbOUcpQ^-)tk3>o92 z{EfDAe~LftW>}vIgg>KP^9xA$BCv9Be9k-Ax|~UQ6J{VvT3oyiZ55UY+c6L4651h@ zzPyJHmd)!}*TP+6k*WKO{(o@5CFhvIBr|JiQITZP2Ul+fxdtd`fD2zj*)ikF%MiHJ z>oY!>bV}nuHu$+V0P%O%%q;Q-o84!HLZgXs-F?qt7!$sddeiDNJWOoyFvrB5xb zHu6XO5~8Pd715H9dF-g{@m}HwK zBJ?$dr(==?VE5NS=#Fz4h=4h!jr79Qa_2pVzSw|j%Q_6&y1NrD1ko%40-2F^P^POD z@n%O=X~9$xv@Sl02}add3?1k5N7BAHe1-V4@8{w8sH0=1>R>!&x@$3SUJbhr9uPZU zE2^4s2(rfRZ?$hByuh`97GEL5;;M?HeSayDpjaY8+}*f7LqW!(CxC8BOfkAc!&xfO zFl(^(=*Bh><)a=ua3)E*|-^)I_Eb5$%i_Q)Oxr zWK4)r1t%M3P;X}rK;g>#dp3HncEy|@=m6;ShXg5C;H5HL9n7|TeY~Km2jyFAPNO7q za?cM}*H&YRW`S!pTmYJB<6F{{J01GfA^SaK6Wx29t@wh$GQV#C)Ip72P$#h9?+diL z>TAneSe&<%rNuB%;Zb3=y?<_cp}s2J0xLjYptoHcNq1{?&AK$#?K{h=>E*F;EvQ^A zr%$6@(Rmc35dlBu$G>W%ZfIpE(lBx8ais2ID}IFiSm|lc53q6PIRQ>j?nMaS@tYCL zKX7~X_wco?p_R4cYCe4aBz$}F{dK=E1K_r-xGa$0hudmF6yWj<8hx%W`8OR`?lqYi zTW&~&sn3Q;vbZ>5mw_tH!gFD!d3_V})4+?})G&uT1=x@C)THV3o{JK_JFQ@*)ZOKq zPa8Hcm(7`%O=Gs$pJO#%;A2NtR&X6pdvCs+H||%dqK~F_sF(RiTB-W4uKG8qbWoz> zzg!VL8BCAzzltQKeun{KgzkF`0go&SDN1`R^opWrbanmK(oYaDg{TD(l7oa^!vbX_ zUZaEKXFEYv9Nr?423r@e;(LI6cW zUS}_ik^AHIM->dBf_fihhDOO1K#g~|;}P?o()u*$F+@OKy1yv`tDVPM^Gi~l>I`^ZqCW{)|>p=SLN^-dOyIf;(z-Y*kopXIcV4iPj|PcrN$6_ zD^Lgr##pugK?uT-^1mW;Lcc=@@xT5A-w=MQHEw^)Iy|$rzC2gk=E7!)X2@)k8d*8? zc29%_5`UjB>*R;r7a10%@f5_^5K`qZtd42(h;v4_h*ceHS{-_m@_gQq?&Dk{S#1gL z1mRC^L$ObNz9V&VY`+eDSr3TV%Ow|me1J&D@tzvven@xSB}fihzyU2)T(aTLO-(oy z(b8Jk@=5IFj?=`sR)yuUf4w9xD7iM~;Yv#~E?b-e&BL6B6xVN@n}$gkozLq__iQVj zM^gS>AW>oR92*cuutyB>r&GN%%1f*S;!mda4Dm~S^H1}~eTVR@ZX_Rx`6BT12E^gL zO-;@=cbYuGyM2$p{{xG>5hsBCKMODOBz-wubL{Ocd3SlWG-e>WnlhK>co7F0`Ql4lc<(V=}wbeDq2Ws4kuGRM_qn#2TIN9W~G)A zO2=PQ3ZUArCzYJEa19k%);DHy@7B>!$YM{)vQu-flIx}+f9()fOf19T!FUbn-WyB6 zbsHv>F()yH`aNDU!j$t3S33BRfihB8R*(CK&Ja5(s2M-I7 z$V1td`Z)HH>(LseAh3RN$~x5>&}{Xx+na?|1~Kud|1qw=^s^N(1Mk6x92yy0FhX5A z^_Vl?@F(A!DDU{Ly;~1f)Az;VQc(=9Ce*<`mIkvKuMQ?T8S6M%Hq!BDgb72zkiyOT z3BdoHT2_>onDo;*DxkuMEJe(HpQIKt%x-Ck_0kVYNdA*k6Q+#=h_2wDxT4TkXqZcvAgvH`y0G!$`CND1b>re^ z!I6oZh7>`|Jnt2RXd=8^Kqa<4dU|ed2T*;3aLxEcpH(5HW$w)agaV(|CLOH~rvm=u zt&oAv&sJEy6`$M65&8!AIO?WG(H6E(%Xs%X0CR#}orF)D9<1N+`oeRVVWLctVM6A| zsuzY)3)D99KI_swR<@`9fc1d{$kqK~_O&4Apbq#g{I}h%pl; zvn%I~oL_=+E*sS(0YwA?v>lho;uaPbjPi6AM6D)ErT))@eSG<>4JYC($*>V6P$Ze4#U6Wnq`^3ju=(24 zUT>?K6a^05iAS*ID)$r5T#ap61y0L5Bki;?E4~ z^eG(x19b&_ZHw8O~&7>fTGKljMSi@AIG3lrM6EUeCeTt^@)WU>}Iq)V{>jsZ3b$INQt z=Ujbio?)KO>uQ|P$I-D1zoCJk0%gBA_MhHD!>ei?fMK?21_~4bCMOasnTsC5*$CT! z)~!MU-!sf@vt5S8BXJc08mAYtt>uu=k1on8TkZAKUx{~!q&Jxm2Ffe@B65$kHG19aq3N&cLBR-c}^%qASGES8x8L_2)1Zx>;Lh< zjrj<&1!!i{C0OFq9zI+?TN~H&27FQkhlW&PESe7WMKIHrDN*P>p8|=MUZaZG zL^rC;5tY;rD_ZTuk|T1;Bn@n6 zwwym^nZ!xO*h%=gkddVBs%C5DaAtc zYat>h2Bz@1I<*jk9}9(MV0^@EEU&{5lhWlYM+hBe=nP=t*d%NfEGlG5WeAVa-JyuH z5iYn!CI za7R?6K}FiwX-1(+02QMs>~Y-bQ`nh15j18bG@K`OU>*fj7Hm>OeJyG%b&vxw!C>A6 zN#Wv3OX$pYVa-yo&SOGJeVU-(Z<<-P(tTynBo;gxb!=34QV1aK7t&cE2!!Vw%L0D_ZS(-Mk=_+QSqub<+c zZCshT|HO>p(sPEFN82r>jdSs6`&m1BofWz)S3lQ<97F4fqC;2Yc3IjV7AWC9PQAy@wV!$t zsituvH4}Q5UDBcbs<)XtU7q1hsaLvW_|XOjY_un^A;Ux;2*p>~RCf%FzVlv81; z_R&H-mjYl5t;<2z+2c~RuJy@dSv*7Ln9}gmvHq+%ppJLcVZEVB$77z!c0T)5Ih2z< z=J@xMX7%?-tF7sB<>$9LYaFTof2JXw3!RKUU%m!3bR#gqPm#T;%=WU~;~UC{JxK#owKIpq_-aOTTSEBK6WP=8YGk^`4O)9mU}lNVzPE1{!E5Z-UH4=7 zSI4OzVDHw(4$2J8P?n=n{Z&7+=u#}&CcJ0JV|%no+hFs`G|fKU+0jQ#*9R|q?T)L{ zWwgKA)Eg`Jq-CVB`Pli+uo!LgDWv6zMq!ir%NL-J1#CB)zfkr}=)C-)e;Jz7quUPc zGip9R9*nuQDSXxP?A8qJLQjOE`O_O`-vCM<5W2hTK#H{alvQ)&XL*eyp{IM5b)4I| zexlO)8C^w*G`(Hl^Gh)67TYtS@zO`{-BrExU{C_9i4eXsd++iSf@K| z+uQY@Y`_n$<YOZynH)NhfsFdE&UoEzNN7j5tX1qoU&uGbaZq5hX zp81c&m0o)KUV3(IIk4j3J<_oNi5Y>!GV|xG-nG|Q6S%5V_+1qih@bsWnZdQ)d98+m zdmQ$TN4AbfoBZ>x>)EesRWB0;hy4TR=MFw}hCX0K4$7YE6E9i2eqG|5_Sd_%X-}t^ z?ydX*wb~q`*~|9p2v@co2xtF}G65V52pA9aXAX^q<(FI;x(l0eF{1YA{r<0{n%h2c zyFWd#i!yds<9ZIH|2{rhuXmxIS+Tb1o|M|Z7q)yl!LPU4uOl^IhR+-w^=BiZtjxV@ z0L5$ha(Q|l9{i_hIrw(p!1tZtc^V2`G=FMbRSK?L)riPz8?T$5(qzCD!U4oS(;SxW z9K0b>Y#gHR@?I+F8SzErZEkz`WLBQuelDruJQ4^Z8WeX}tx@SbNvn5cULmujapLn& zntt+ea^xLLd@}AVZZUc6Ez0_plTNhBn&H^Sqi?2hau4wJo^87L8--yxWNX_oUHSsw z4QT5HDQg4!vqr3BypRkx)&N@ZF}0Gz*DNf}g7NgdbG_~4Egx==O^>qM7i%2yLu=bZ zUag9u8<-8+`}a#|knJKCOzFNgm3bnJ`3J4##`F=}8Z&1|HGvugS!F&? zGi%KQ$67w4Zotx)ntvx*X36dOh3&TCM-`<-Zi;1?H3VN}zibjW0Q{-F{6kWY59F^t zG=O&$iAsG5xM#JmCpD7A`%LuKk#_B)JXwy8_21Fjq%msFEWMs~t+ze3odBb44`UC} zPrvYmC@M@GE>B0Z5S_u$Df zYj)Y8I+Ly|dap_~Aj`$`mafZY+|i20GjUtf;d1c_xi_@sY(1kV)L3eB_-A+JhCY(1wPBO2&J6#1jvvNyFY%PyC!+v;b+JQap2tHM<#?aJX1hPSxcIq6 zul@7ta1Sy(HLDmwn82A`Vz;(71uXZtV^R1^^L=i&Sa)C^tGF2<1g9j4)Kv zQ|Jc}2^u149K>HY@BD&Y_}$!R_Cs){a>oWHTBnVquw)dtWG)>@bbr79YiJ0IYXp+n zj-4^sncG=AaD015lz8;_ODbQ|G1jf{(ZTM9S_8NDQnH>xB&|^aBn6P1SuZyjLP^Au zhqCG}DkaB-FeL$v0vZNSMrETahweJO`=|uaW;S$SMy~n3lH($9mUBX($HuMwK)IZ~ zg4L8NqTnmJql|^t%XBjXjrJa$z)0D%dE5YBn($uh>Qdl)V$|teE2Qr*4)&+2XlNl zO~+*QAStXW=T5@4A4-$Jc_5TJVJzi`w$3pm??wu#{rGT73@u(dmIjVC2NczU!D|C- zA1X_soiAL|C-a4a$ptnzTfINRdDaVnElgOxh)|RijT~({D^kT7K{k^rdSXkF4XDc+ zs0(fAnm;Tw0x`%LMlRRnX-YyAk>3`OrJwbprjH~NNxwW@aXbvshG%OIy zoSO53JrfophI=?kCdK~5tPsRvigiGSeKkNv7JZKUo?sq37x&{To(@`@WUUb}RxFEo zxKGBzPk}289F_Fah%pi4cH8867%IB=&P5EznjUl^BIgMuEKiZN1$(5%7}m=V+2S2! zBv#J}K^DcdG<8azF_g22@t!NO6qry~dLg9^!n|?SVfHWlk@zaLy9(Bbj;$-3KcViB zxTN84COE6Be)GX>M&&!Q48;Vvu-o1t1QI=fl)7?5GDMEkHq0O{!#Ja$>yog#WD==x z6S>?a2(>2_I5H@Xk8v{~-Ep@M`i@egW;c*YRzV~mn6(KhrVskMkso#e$7a%4Xixw6 zH$@_6_pzuUU+HH;^Zh%XX-tzU@%MV+SzP;mnKEB@lZJt3(oIGFHZ56T+_O!Fj!;z(k%=usfxmVgd~(dLxf zIko+puu&rig$WP5?2J3*v7IJ_-_mdgo{OXqP{u)oRPJUO6~MkTEfIsZ5nc!rLLE0l zdlxW>xj2!Vf`Gk4?2*JuUpVs%t1N(P25=0JJqLVc2GwKLIU)mo_=q?Z9uy!W^+ZnoOl+xau}EO>G*n<0 zIBX{MB5GDt%G$TdV}2OySja@%j>dg{k5e{2jf8b4eiF;8WVMx=Ee+gAC3QM)V1PWU zbznSptMG2f5#$?^GkrL^e-}s0&gb7{W*nW}KNU}}{rUyC`ON+-+s2bUEK>m z^?kGU@MwDOc)xjd<2kl>{OZwi%g@Ut0N(K(4~z|&d_4z$7O%cv?VcQdlxOGX_<7x2 zz$9lS4{amO?!CTRKS#O}j*YRedC%$NPb*F{zmCF7<4g#8OM(-0PuOZ|CR?E&r5Hi? zmmYtgCqJ0TtkxwJ{ytBaubR0H=FDjfGK?tTfP1VC(Va95rkg#d1-}?id$)uCc zx!Oclt@u{KLB=kyWZ)cIbYB9O#N$<`s~1J@3W(o1dhgHW;a(D#nAHsR^S}rnC+FGv zZcsp0OH&=Z*I)IU6M}wK*ju;n^kqST_psMb!OrN_vT6QY&&{pu)zh(A&4L*JQ@R`Q zL(7klA0mdKa7A+%YRG+0O2!VM7??UHc?pn_A zx91yZjsa=au^TB~EYJ!LVJZ0r-#71_+cf~Vo5u~=?+4dVjH(_8+Od`b)Z%V13{Ih; zO>(swRTIcGf94wy%qmBaG~29pYQ2&$E%S(#_0D1_hoy~K9tV+fCsTMkbgUV1qAOGmJh%42(9VmHrL;|h@RT3y*C7BH zz~XyGwoiUO0PwmG?6rp}k2>oCD_b!ig?ljXvxC#FO|=b=Sgeix&g(#Jgwh^ixsmtz zI8eAX1(IFr%-AdkYj`FXJZAN5q`)_I@Z3Ee37_8|D{giB)eBdSG|m^(79U+PIV`e_ zR9{`~YaDLI1==#X@7U~F)XW&rQUbDPZ8uQ69W<{|B{jjcJd;5@d`Ni%$MhhRJGnCq zh`L@LHyQCDyr&b}q9{B)ty}~oDW-+i&x1L{$dbs zlC^Y~rsgIz88i4*6RFt_$r3e0G2Q{@)D1kR88M-W%3O`jzfg&fb9G?9&j33+(`Yd0qYsBm%L%9#gM;_XLbYS&^jpa^Thv)qOj z`5q(DN!gbA`T71m*i+LTvwOf*t6LP|{Q(Tzvzn_vn)J&LIvl{XKk;gv+NwuD=j)$2?Zwzlb&Dl+3&x7c->Ks%EUC4C z$BU`!?c#bYAV=WrX7kch%BRMfu=_7pBUYig;i?YT^A6q|zc)4lg4k(^7akiSEsLS=1`Vd| z%d5nTpt0{;C={=xFTH4+|1_O%%)5%?95CoOdQ6hoXi{+oUH83%v{W-Cfovi|9=+gG*+OJ0FM9c z1+p(%x?-r~L+`i-!C*^)h*B1|f)s`#|B{Rl0)s822r(g%l1xB_)wqD;petYTVHEDC z3i5{-X`Ox0^nxIWa+!uQyde*@nb8Q>c&?pjaH^=>>OY=`e`z;mqsl|#Au*Qfeu z82PT-*x{t6SO2P?@2HW|r%@BZn|@WlwZk@5uTOv(;gwbQ(zaRUYUB&QFA#sQpUw;= z+=(jO*$V+Jx{)$|$9ej|);G72E8CST$(1|)zC8f`l~`~eFoHi6t~I6j3M+U_;y*a6 z_g81hiD20koYMtu#EFj675=;}HCh`86}QjfaEy3m)&Y*UI_P$d;Y$5{4}x@ujKsQW zy6+t#nR(S@syB?rH)f%*BUZ|LiLUFF^?d6u(1*G;Ect>>be!xPrFf5{u&153->5fz z{K99rW7abYxc7}@yvOJnhu7<;&Kc+QO2m*;oRSfkWX&0te1+IPV7Rj20ex~}lx>f9 zy#1&0_k1PXK6dl(L(0q>S(H;W#8`HspWq5U{P=4v-}}w@iqU(-`4P9>kecolx_u9A za1?L1uh=!7@148+0uMNJ+#<`(VIDpcY{(f(-yOLqjJU=&mC+|cPux(XE(j8H@z=1eGJC1$HH)E!eES%-WWvN&Jz|@HP*XZi4mFV9;uFn zw)~Y1(3;QEde?lS)f}lSB(vt&9?i)o|9<=2z#q8I z0~E8JBRR`Ty3(Jnzng!eEDdR8_&#Z=Wj>Y(oBS!Ca`79lL2~Lt nZ~Bj6??2U*qlwKwvAMB}o0p5Z1spdEGZQl$Ik~u^1l<1v4o?ve delta 16326 zcmaj`Q*bU`&^-vpPEKswwr$(aiETcyZQHi(N0PTt>HC)-gY%K@-85vw+!D{0(B5CizG- zQXUoof)|Pa!%LNy=qKm~6nRDF>-}Oj{e;-Fa&;d7bEk^BNXpUiNJawO5#G~vBR>}g z&QMFkc*gGS2~*hlNUCW5{cYFz`*&1zEN4e{Qz}b_*I_b?mIK0wZbvB&t&YVwSibbDa?iHAFaf}~LB!}41nr6~^PT3`LLLtHy z0q7wd^$tiMCyC~GkOHSETnLDOas%CG6mnh@7IPv!uLU<;C4*%p8q>DC4<7OtCV=bq zyEhQ}|OfoPbnss%deC@IQ4x3 z`MK^q%0sdmJg%kqZK{Y!2I^RBy&*~xWHEvFMRtm9&J3h6%NW`oZfkKsJ#O%=?WHwP z#WY3D@1m~t>yo>Bden{nY88i$lxnwNxTZxEy2biHq?dB!ocRw@{(((?i0#kA4@|vw z5pM63c>8DVKLP|;ZQDs<;M@`CT1&=>sM_^%K8CE)ezkEi$w{ zV>$UQ!7_+n*XKgWDwe3Gs$)K=81UZlM44kr=D%xt_nmMx83OiT&b|0eI&cM{3dQig za`ANsrcdYA77WwQUCjjedZ^CzeSbBy-KYvdb?f{32c!e(tt0~U`)z(dgT3H;9>HDK%f9I!c9 zhS~FwL_4e|UY(nYvOTQ1?FN<jwnFBMGJez_N;cs=1M->|G63H zyy}iCv#Kat?!@j5DKh>y(j96Mc(-?vyS`RyjQW;hpO9os%wT(zGAkPu)hbm|s zIB7kFaAci^mD6_@LZihZC)66p*}s)KBal@eW<&PlolhJtR=x^Ehmn>C#bI5(g^R@* zhKG>b1}wMa1a7Ge$BM+gaBIyo8_cduoh**1RfK_Yv#Jdf95r=X z^}3-5BzAH-U7edyyvIb0g6y+rd04VgxX!U>}l#BshJ{N7t^WQ$B$W_(gCSf|=&O&V>M9e#&$HAIFb&j8q8AQAz_pe!{Ndl{HxLmBOwwDa z&1Ah-AmRUr2Vtc96aNyWii6S2LNTKXX+z^3(z(Y zsv;2tZ>{Oj_(Tj)2*2o8oy-$0d<+#T?}kUMQ6=UPq5`lqS2Gu-2d^WjAW5t71~m2n>e7w&aOLq6=i}ILIo$o^eqPequeKh#aKyKgGXKk>PqYE= z@<8V(3&R9ikkibN4nec*B@LQAV?HDJ7{!mXoR>E9wN3W)eJ?`mZSOpYZtzS`bf^q_ zEC|AgAQbDg=t|Vpyh-;osM%#~z|-3UJtA#{4yX_d0UK7x1owmu^+%6-b#Qq+K&Hm6 zf6mwXY`}QQIrmhihy%wzTf&wb=DSH3x$kR~h=7SJ&AJ~eZ(u5rjH)A81oAz1 zlk_@N%YaH>jE=W6GJ;}*GpUCN^r#B26eCbD1~wz(AAb3uKlm> znLnE{npt}H1O~wB4qYz+hWGJfUG zwz6+~D=Zk{MoW(YiK1bmCuoB0lM)?$L2L#$JKBu zbD>Pu`EK@xd^-9(?Jx7JTe{SHbA62m>Ir8`b(M$%|8^Jxgc^)kn?9jhi zP6O*{AH^(usCI+&;yjn(3@aZpl%11P{<@E88uZjhWXz;7WYugK$k8#iymEXp%)_{cw;XvA&twraOEh2=rC!XW@afSe+Ou-95ycl}vD5rz zt3@b7)+YM`=#Q%V_scvF{tks}yZRl&7*99;Hm?PjE{ahfiz3bJU2b;&Wopc=WqEr? zs6V=xkzOd@1t>48RZd9N)MrV4N zm!9fYN@}aQ)05EqlACT^J!Vp5V7n%~TG92|?!g`c@E?f6D1^E)-~Od!2!NO1{i)+E z$aKr-Vk8ZbtB=XUMp%))5JyjbBzsM*(hw5p>hkht^;%|Ui4%Qo7mJ}^;&jvA; zFW`^Mp(xJ2;Kjropx^2g&BxwMSAgQI&l{FyZx=n4>^dMX>!gm^BSGUyg1+M*zFg>f z7L?kK@nPc&G}MXX?~1xZ%(9(CB;bGtWNDwF2|#u~)MmzUpMA11v0WnT%V5~334R*vsut!R8Pp^YnHA*VdmDqlRz2aV zv+<(z`ViII?$viDiPoRI_RZN$o%0Ud__)P-1oAdO&JBnxnS|x^KWUvsfgjWXwm2no zYGHF2+jYOS^e}m>VgHKD%N&-zYkStGu<~t2de=1fsO@)l@xAib>N$9oOhB2-LtZ;V zyGSeNHhuRf(46O}b?Rt6RoTMP+&_Sq)d@_F@P+7xK6P{*_LWsvrF%0Wmo^xIRa;NM zKV^%5qKUPM?jl#F=JW1KZx!+Z>^s?WaZBRz)Qzr{H*Xi&iE}#!+z}812RLFW%$G9~ zs(RJow5vkBX&|S)700+K)MxsUbnn@*6u0(1by_dg*Z~~{Az1~>zt(ChvN1GXhj-35 zipP`WQGzVd59NU;77azlJmv^!Du-Sf{#d8r5r*X%-9_AvUDv;Fc%jVziyk~jcoo=? z!=sL{DxK$hh&bXl<1w^9>DK~t?l5|CX~4gvIVns*QUuT(Ko}l$$>Tg|9PFtBGk6`_ z{cDN|8pHRAHn??qn?Ck>PoAWD)1^tZs_rWat$MCiDH1%3x6WLMdbPqQqP>}~4x~b24_%x&6Xx3Q6g}i>%A%BqtTi{4 z%dvF(8pq+v(Yj|}_iamiq2S*qTb!wL*!4Q6gv}rQRX5#^ss(8C7p`p$hB>#5`|#mk z-nA%BrnFi`Ku<-(=cwv6$P_7zk0zP%J!y7%46);IKa;LLn$>GS3jYprbXHbO@eAN_ zj`5Z`w4kVm(ci(sSN6`TPIV9pTDVeWs z31$fl-}_q&7dM!FZX!XnfeJ#(<;9%GEr@9_sQEsk1~egY>DzCiy-$;RA0fpqyK#Tf zy6LspCh>&Geg;ec$R^|Fsb49TVU39v)jJ|zgA=ynKnQ_^4zRoAshRwB^zqZ>J{dgo z2~7MaLAVr>Er55xQC?U0iVMwA%|z$gk?txa3sLk^R?m*{;V2A2Ve{Z)IOv z-^DcR1?B=5hi^YDFc^jUNaUZb{lf8u%x&t+-<&J3O2%P;KFFrL?xFW&p}ZM>p=9sf zxW1tWaTLdH-h2)$Vch)gxwxv#$sy+{xc%V?=Tx7)>TsxIu5;dXqGbESy@Mei=un?r z0?C$8<&kCnSxh!B@%n39qjp`5AW%Dc zi6oE|jn=Jen`N5@SZ*5C_argKhZlI)9UF~O@sGP1uQ`@{1#jkvqMWgl4!oR_ys<7k zUCV~USq{zIt1`UcNbzls7OH=aA3kuL$MZfP8n2pm`LhWRj?Z=Y210;tpUi>v`kRR& z{|_^!j@K=LzWysR8eLz>HK2cUFh9}EeL$W)0DG=v!vUOxQ%=`2Z`XkT=-R6};j+ha zU3VQ3>;6uc@O}24Q{lF~V}yR#xZ}_TWy@}S&9I`oNsbE(&u-*+GwM3P+arizi|Nuj zxOKV9yM`cQ8I>?xrWK$^!%7UMQJ5Kpsth(QLZhZ1Og^clA}9`&p)(O2!mcjL)G)O?w~*CsCFVTD+tcM0&Wc z4IWlWx~UWmS03$4B5F<{f|>*oEQk~Gr|@WwS~6c=ggYXdpcF8wB{Dmzbs$KCD1rlX zN}NQcB2jF6TTd^{tuQs0^56{xah;r3fxsx^k+F7ptyZ7$iNu^`0>w}K-E@B>oSC$N;#D2tvVr$7Z@ z`Cr^h0shA=^zc{yu#7rM4C4?))zDE29E+rO+^tPCC)HBZL@`Y7&*AsoN?O#y1Xr$~ zd!T?d-fG6Zjoxhh#||FTQSIgSCW^pzQ5OFIKl`#Po7KtBH(>JD zSb+pN&tKM&ih|N2$jsbQ3BWnOms8`CQ=D>0N;G7v}R$lw2ZPuYIi4r z3I^&JC^eX~GN|Y?L-XjOtVv=pIW@Ej6F*!e`RpJCtu&}=Axx+sg~BMBdIsu$2N%jr z14{8Kki}O1{UEsFVGA0Oda&6!IX8w5@wApjnMh=|N)U*g;uK_jo-~jlO_KPM?&7FW zX<_!HNP}EG2ousW;d(=`VI8_`Y3b7}G>X-4eN0%My3qaUcTHX0M2ID@9~p=_Jdb~J zR$YUR2X5$Hfqq`^Eu+=z?yEOBYld|O>Pnx|pRKY3Tp#_-%iMJ;ZU9jG%eUJ9iLsFq z6@cx3#aMaBCX^Yy_mpnWS&pWDdp8{trM){i)kDtxmv8LUGL#LfDgWCmhtj4P5jisx z+lYB_?TlO*k;CSp zj8jw}s^l-F_3lU`VbdPK-Nh8?m8Sm5D!bQ}+%B#(DipH+e0zu|nw{bj`x~+c7S$rn z?$AlLMr)O%Eucy2+61_idi9qglNl8n2+3Q|XFlbTkDhFrpIVguvsZwnu^dfw6KODW z^?2`I0M!a0OC^FOa1o7QWod+QFTYZekcM?}Ew>H9yB zlqmoI(>_%$A%__~?DY$dsiIoan6Dk0MwAqaR{gn%wIz!Hlu81Z&}EYJr{5`oBZf5W zY-Hkf&-FXf-e6_9vH7i|pl7`9idDYPv*Z1SZ({C-R~`kcmZ+Npxv!_mpm^h-RYt+} znf6ZV@$2hrgU8F^)wVU@d+oy`x8h%y;dVliZ-8%I=kLBAv-w%C{BW@N-j_pNEv;I1QJ7?u-6e{T|-0`$MU7j6f z*E^ass}d9DzN{X#?Nl*4D?eQIBdw2RpW8mkM4az0C!31BV6dcsq(E}%5F}!FRq4+=L)L=Me<#chHR9aA2Wc)Hz2q~He8t!Qfn0R{L zqCZ37EMARN$QrW@HjAl2SWMy+5(g9~)}W&Etq?^vh!$bIZD2)ns5rE4jivcfSK&KwanlH0 z7*HxRprLbkki)%jZJ`)!cUYP;gGSLexNmZc-rxXl<>Y}8SQT@yU?Cdev%*y3&NTHH zRAo4LIN9hba#OgAP}L2~V4rd;Ky;`Y123$s!USV(!#4=&4c6r8_u_8femu)AtDDG` zrFZ7esYL4xP%tLo2jnpVuj7BH@~z4V0LBM1qeJ}>P+B~er-Y(bWoIFWvC*HQFvMiz zD}{~_*Hv{s*#4Ef-xvPDmWOv3rg~O> zLG;&iH9hb2^w#24rJelic2=oryZ3mlZ7r>QKegVjZZV~-?`-P65h-m!-E8^*u$Pqh z%Q5ErdrPf{qYWb_j4E^h&!h9@hS8AKUg?Q9;L|Nz-)!#hapvti@ZXv{md(@?>D^Ll z27FReb9TLf&LZ-${2nQ`E-mI|Q5hl5cY_hFJm2c7NIHciqS=z_Hs7N$B-z-Wca?yj<91jw&I+%WrW0- z{;SR2S?@YT0OQ+_v*5*-sh!Isv;OK_fy=9+iwQ`?mThgpKk2H^Se&@Kle4|#@f+yE zF%;yeHHY-1)$wYnNBh#R{)@=J;@_$h_fVvkP_2IlB?E6 zp^|pUMz^LBTZq>yk;rs}NXn`fCr@f>}i&tq#idVs3q@;Eia!{15 znTx90T+`CDX^LmE)vM0y=v(Bsbe7A;=>&#YB6mI^1pmnwLC&&74%LHv4S73z4+VIz z;DC4uf&x-c(Mn5#C+l3qWjjxCRrfhc`)wx&T@kBa^uLDEhLJD>f(Mg`}I4tI9zcE{l& z2%$X+>P%RP_QNa;Ul_l>A&q4r4gYT@q;&s-PdU+~0^?*(`K5&mfFV|>2~E_cB}dw= zUUIOMMu=fgrVa)F33xXaxI#YN447{>ROP6UgoB?Nqh2cx6Onds(u^^I5r`K}W(Q}? z+-*kQT(M48KUEy?L=%1R?(|!ob#?DAe>x7RS=Rc)Ek16)3bUEcRpF7xpcsdbjt&Vb zUGMP6ZWgWwTuVR@@V*ssU=@mQ;@PmJY>ib1a1yl+N^V9tT=GIy!?)aJVb8-)LQhRs zUU8REegO3G(|!c`dxoQL=9sBo2u8f3+zJRv`XR7!dVEyut{qj89eW$|;%7CTV);f8 zLN$$Hd-^o8Wd6OyLM2kPE$gH0HKOSbkov#DFtPt1SuksBQG;bNgw*W@y9UnL|2DVj zvcE@FkR@1)n`{g$?NPHcoV?c9Fcj*ic=Y6ZWAn~rDM(vCDw| z+3SZ#J_bd)pHkOZwD#`2{J{N-V}+Y<&4w6cN!=-Rw35(7jndG{$Z#teNEKNaF>`aG zu2Jf&yqVxqz1W&D4t9?BN-^VqI*ET7a905$aN(azt@s>BJK&u-jmPxu#yIIj1Q90E zO(kMg*jymv1U*$R47BGJs#bwm6ISOKv;(q0hXEgmjiiw(mG7UuHi>AESC0sShld+|PJ$FAf4iTyzwA?}S*UQktaWBn{oYB0ifm~X5h2-0c6X{2QwjKn zqBx`u)2sD4Zo#6w2l9N$8jHW@s_(@5^YYhaP6iT(64zE#IP0>2W*H-kn#3zETU&5L z3>iaFK4~jQGlxQevZCec#)>KC&Kl4^J$=!RHE7Yg6^t|%u=Q#FLNfME1*0GCP`f%b zo4)ZHNOFCm{;le1>~MoLQ^|RRFAFg9v(q$c?FxGT>dXBtm~dio3tJbth1VVNYawuF z6?k{cR>}NNaaDa!UvHh|SJl(ZTUXT{4IY>FP8NT_^}`idBM_^d^TK3%dz(+8HHAGpPQl|L7_=P=IbOQsW`vN`b^*(sz zH$nJH37yg}jt-TwNRH6BHIXz)UD_2BUA9S};bxx$tlfuZs<4k?i*V852Ik+xFcy&6 zaqielL9GITuU(?t^nC%Y-?Zd4NakZ}?A_y%&2S%kovd0e-&I!?w5#qS8q;Z$xDczf zy$1J0TH8skDOY-Y|8L_w!i>=ON#}NjO{NIFJq95uD~oh3yDWM>+mtrbxFP9`^!_>K zaApDxJUbVVQPR=5wXp>=r*f$t0?BL2c5*|b3B~j^)9Ht_SJ!SqUnLd*PKP{6@erGL ze4cyk52Qyto^C&@9upNd`64s6NC7tLz58rWSpFz)&jleP5c4s8j|;Qe^|#vIQ<(0T zCdFQxxH9B~vZuTba2FyD>Zp`@yql37v&S3Kl3V+l2S0*|YhWPM{nOIJu&)RpXSpZL z%4IS-s<%>?@KkcOA=N!8MM=>I9f{?R=3Ea8~$eeC4ZjIfe!WLG8$Wdw~;tqLZ; zdi%-}1-z_IbIxb>rwWdai`adFkB;hUor4wej-6Yzm{4@D+DPaj%Z^(u?$bk@$fxKI z1jhms(TOTvPh1MLG^Wl*x@a~C(LHSC*!V)-fIu;U1T>_wb9yI$B1rOWA-7^c_-;)z z!yZE$Q^SJo^2kl@dXuVA-sc$TEJUigPO90Z;u0->UgBBUd6JVX+aHM}6!we#?ML24 zj|VBQVWNFesxs?*lzu=ozUZIB>4`xmb{CkS&1rfYM_M3L3=tRK(duWTB|8IeBYh3x zo}c>~gWCNU=rbmm$7l+>u^cF8N}w?g0E4qd5>anHD#}lMd|IA-W~_@n2XrkckSGuh zj-fU0yAl6PSN0t1x@exJtc)Sd-2)PW9swru@1$E!c-D;f5PKF2i%u-1Uhhh7OJ2+- zYYEogR{{U+?C0n4`(dVXR zj6{XvG!IAdY7?3u!2`{L;M>cT1Hd$Y9NM$Pv=r5TL!caWUaCH+uBHV}lBrr_c#BrBTJvJ~sMZ&*(B=hC(-S4eg)7EIHz!g|te{))`@A)7 z+A(UK`Aj30->l05rCY*PQxK~GglSbuW#mdYPw3u~MQTY(8^8jDED_7AGIdH-2jyyc zAB2&x22)x21RQ4sUtGSZRTD>3#Ep7noIh-iisrql@oXR9|`-8|y#An-{5p z_GY6U3N^BIo94`vLi(w(V*J=~u@Kndprg$HK*1C%FI#mZz{7(i^Huf%R#&GzcJ<^1 za@?vrMd;gY@eTIyoo^$DrclKmQHay}YbG6lNq7%-?4YUHzzLe7S@+)M=Hdc>qWn|W z_dY)sBeyfjXC-medMHPS1e)~LoJI&WH7rb2;JqVBU@>DMh2q`k8K`YsSwDDU(m!sQ zK{sN2`NA#Orgg9pPFp>In$!TO^5bBf23S2~Bcz&9X$Pm~8i+ra3WxaM!d>Ei%tM!u zhn4fo;_Q@Ouu;cot9>LGQ?q<0CEF6##IOt{a{vW<%Ext=GHohu9vtQPN!B0pkFDEZ zAok+jtq_xXZ{Oe7jMG9eNKbpoAJg9$?N(Pr%7uNLk9b?-n8KO>CAa9ntVuWW=fyU6 zPUwD-{f>tJ=3xt}wq?CWo~84{I@}Fzx*r_i&ws?`s3FKzj5C#KoAP$_p;BWv*@#{i zkv{owy#DMfwpj3i?a+Bb;Q94$)Zx6eg5tUjdcRgW#%AUbW$E?y68o62BTZ$ZL1mNR zlNkHu)gjD}KD%B3m_VB%cPB8L#$NFph^VrQ+VpDN3>^nn+Q1K+wb@^~XX1W-rDQtQ zz!X|V%tt%$j2>)mcEzN~oxeMQEo`-R=Lh;Q3~U!K<=U-!fL6Evppp`U1SQ=g_>KUs zHuHOdQ==lhM@ig;Ez8xnef7OgNXP{fSa%d(F=cuWM3M6VV|O3#&9b$JuvVbG(xx`~zWXWD))$Lge-L8%mgsT+91WpO1-#HKAF}gGws3 zFv>mQPrLB(ElJ_`J{m>Lm@yp#8?1)N>+~a7x|HIbM(PBVYnjvCO*S;ts14uGA1FGI zy}AF%mnn(noB;0s)uALC*^UsSkL^Fw`0Zd*oH+8q1aTUWnC(g~H=nNTn2VN}CPxH( zR%v}O4-G2a-sgHD*7z8~3#Q!Z$*m2_`!Mn%rs%VSyMzVB5J$^QY+g4$B+#lUS`((F|BWlLi+GA|mGW^-EsswgRcRIxHAp5gDq_4( z(_5)aLOP4+c8dr_qT$8vDx;SiHpk)3L{5J|f4!UG7n@G{5-RkK*ICPFj)A>}*-hD4 z+^Q(Q`TK>qN!MBjaLZ@V&5`VUJbds*6^ zl(jnv3J(zGvc!`RYillzLr#(j8>bqbHQDaegCXAu{5#lGs1XO3o#9pzCa$-}t}FT5 zuB2_EZjHk#C5xQt77nrgPTtN ztH-f68F@woL$}Z!E6K!!3D*{EOBA{mk@^Z_{cb-fL~wNNV-%W(IKrp>C%NWw3;b6(oj$lAQ`m16G-m{V}#D9APD{3(3sFwArZ1 zFSTPe_Q~z0dtaRpihVO`WgCq62Xi5m@(!>FohuiJg^p__iPX3-Si2&4ywDvloDFqV zYGN(d^M?b(2p3wr1WGLOksFK#*V~$+bZ~b~nAdGVH?}U^MD~&dZ>t$a7?j+^bD=HV zzL;x)|0tyr^Y!6$p|PB$Te!&yFpijg2S>Y7iK$@n#+ zHwRxb{}X8g%vJau8`~j{!3vsY>!uCHr;N@9S6XbM$7-_?{Ciw9h(B?0h?LqE0h@DH zH#D%*oLJ;fz|Z&D?9^B5=f6%q!SOOOlG;H*IAb-K(?lmif0>Ei8z)3g+7%N3k}tM8 z@2&F{70<1o%J?a3?L-q&)XD+3AU@z)EPTD>beU^;F~v6mpzrtYv`8?gRBmaRvT65m z>iO^ANJL3SijF6z5;5j%%_30eRZ6VoWN3cZ=uy0y+w1LafYB3H!JE_m<0PUS$k@4R ztEje9BLVNeC{L5UPoLf9@4Aw!XA@am=8D`EBZo+d65;DKaOm9dtuA?D77q}umNVK7 z)4mO6=s~94x^6o$W0D0;H|Xww2Pv%tp2^{uNsJ#F#*YwY{`XHsXVJH-+zLOpv%~m_ z^T7#i{yv;&-tSSR-9A^uGiFUGj{}}g?bph<_$D1Lnt`ew1}wI_Ip-=tTs*O-WiJ_ZKl7e+ zW?D7hKN@W5sDgZ11~Y2(vIbx5G)RO>1Hvx?I*a+VZI+kccyBx;4#I%>18^g%avXhG zeO>u;my6IYF(U&4$g+KroxUz2zMdrl^Quo_wdU4$I4QP26z5aVYk=F&%kI~x31AaW zqJkg8#tizgr$ux(+H5t!2j+!8*)pZKMqh$VyTN$h4T{3Ky?iauY<7vnw?VcuZ8my2awJUPd&DC0l)qLS`On60-7AN;B+uIYm z>vC^7op5r^Ph30v2;d#-i=&Pb{<$5;ufA)$mHb-QWrp44-X)jc@#0Y;r}4_vp3AT8 z3H-SDwi-6u5Si<~Z7REM;@Dq4oR8R}d`iYkE2+C87TcBDSd!YXZ%I82j`(Deb3y38 zaN^05<=(PDxa=QJ?;l?C8)IgprgZMGNa(&1vpW~d?c~ER23!V=rw5Er^$_q~bniQt z?K|7_%#z!swoI~z^zw&HDm2U;<#p@P*SNE|I(29AJV9?;BGo_n%=vvr>aF)>(e-7u zc*@VaJD$ik{AKh_^L=fo@40ExKZng75ZQHSI+P9fJb-dv?~9<**&4%JF?a>3H`igR zH|nTj>!jOU0095Hv(zc&QE+rD%;~=VTzdINwA){?-_K~j_0P+JcH|W|hQHP0$1?Ecb@w|z z|BlwG^%`D<9{&gBX6|=T??=6(0chMccu#KrYM)pFNH8D!qeONy?9w0aKEMrU>|l-( z+^gvsa=#_73>$c-HeNrAQCG26>ILBUin@!etF)e_(7Um1l9Bj#9Z}$&6>$b+{Y_2*a>_A5{_3$xA$exyD>rGM3hePyI8Nc+udvvw>Xnnw<@~Ac$qdLM z@W4{|G17WO{BaZxqT#sRK52FWc$56xjDRnHy~7vCH6$t>C!m!0f;*h zE%PQ>orc22fbahqBY>fk2^b(fMzC`dB+&V*9A5~lYb!(u9_UdE=P3ygMG<1^$_*9@ z=)X}&5$xAOT$d|kEW?#wy92M|)JHT?hSwrLLVw%ro}79#3kc9>>Usk^?IaGbE4N_g zq+p~=Jje5cf#@P1NS1Q>BHfEg#m~)&rKFhfDOR9yfkbE>JnAG5uW?NTkv)?yGdI^w zN>-f?K~)_-0x=O&O!ft2B_Dh@uBVb`)Sjir{;?rSQJscPL){HUBP&V4}sqZm#r1qmBi@9=L$VNHB!OTbn&yzPlWvrj8MdK_J zWX3~|c;b#vQ!gm}o|zn_Pi3Ym>z$SoG}kvB_3SepY~DEx3u6jk#WjO9HD=YnANiHK zJnqz_tSdNzh*I))V84Z(6#o%-(oGx?pT#*|E=uVbE4^;Fhn>O7=ol-z?zfkzFE^Q^ zuIiemwnfdj@u!;1p_3Vs^}LrvuBO#EBFC@PZSO3%$=hssn3mx|5}(^WrTW6x(!{gbqP@G7%zfTxS=?MRGCqS~Ae4AGb6WW7~`8!exlTB02yr?F;SP~%}CvQwnFRb6T=8EYuJz8#Q0Suk$jN$0f{K*-Gt|Lx~qtxEv6p*^k4fB%?fWFj9y? z$xnoaNp~BYl3yBo%jX6x!!tK2Mzm+C=G#S?PbPDogbH#`i-wPH@TDJSOE@8{tCewR z;G>O=x$j^TgW;rbS^KB|HFhacpgnq&^kuXck*M0A+=w!5xf@PJ0iRN zKwJkD>2OZRb+EdIhklQwme{v}hiqU%S;ax>oH+-Qj93g8ir_Nabq;G%hKxL0O{fGT zqa)ysLu-XUmdeEN$7)4m*2AlKSTVrDXpC?S36s49)Cz++32cP$v(M2%KL{H{9{rIW z2Z4A&8I{0A+c@+IEvV@rX!1}5c^;_N zDlIU^_{@G?1R|XfNU~^p!9z{=yz{=|D%>Lx2%-y-=d(aoi4_Fe5JD(ZR>%?LDhlah zl|qZWMv*KIZ_Y(J{fAhXk4Ku6ql7Bjq6#muA=Q|F>^IG?Df}yPR4!R-V$i2h1lkt> z{R}4me4{E=rgN7ks(Kj>Cp%(N<~=r{av=nZ<-?Izwe(uWYO&zxd6wY8{J6RFo0xfU zG27rSE#+~DV-Yi1r>*K*8Jp%w9v)+9%mSWg;X*5rDJ!W6k!G9>}XsQ>qHG%?{=An3)P=bt}EY591XvU&9QbY*p` z@p=zDHy__N{PAbG6&&E^%P;qyn@EXyzqI3i;px1j$yVnB3z;;b_;P%Ku-R0}46$jJr#Eadrp zu~SjSy)Yqd5;F6e>KXX3{<%JbJb|N%__QQa>XD2!EFl^o(Iyn&%kvwRXW)2^R4W%i zY~DYlQxwkbA8kMX+mf;zzbKWjs)j@G+vVdy-d;H2HV{q^_9BLDyQY^k8C0 zHusS(qDFs~AmIMU*rosMzRZCh5@(#7RxQ@~Zlv-943)m+XJVp*N-FbEw~u$hgJl61 z(%%=B9Guf|{zvedcp5mh`BeOAi11UZ{r=h*;U#*FS;yG8JRj-nVnE{Z*7G4 z`r`FkiT^_r`u6_q=veUYBk=uOs3+$9bWSkGeRuEj{CsMWt1vd;oc<2{nCj~dQM5q} zQso?#7RK1OlDT6P4xXVAwU4n;v~rMwJ^yD`^zMdNc`BjF9fNk;UE3+aqh<%KJ}A8| zPCvs76}o+0Y`W+Bdz}e@v0D0<&!Fk!O|7Y0HLzE8a&>%kTGs_1c8Lsms^7p@e{5W4G z+8@|QR<>C62Ulc?NyIpl3*1C+Hl$fcLaEWi`4Q;CZ1GVUXT4MK{W?;7Fq@~IkzKIS z4AJz>D}0Xb*Ux}Y)hF_H{VsgoeSB3i6xb(TEjd45+^XEvi`7e$cCP9B?$qGzG5d4j zj?;P3m_?VWwiFGpdBSZMZ`fY#8C=u_v28#bbZ|7MVm^0g-n^EO>$)Ln&^BD$W_ zeHZG}W ztpvg^Hz#I+9NBxsiW(0V0}T=$$c}Bd)lcQS0aXDxa3drbApN^hD%?rWu0V3$`nix` zE&tY?UViWx?az9vR&0@8UPbrij2hjl5f|m^WeW;N;?DqR&anwqMvEmVgD8g?i|KDx zPF6DxPBT;U|JF9m%sEWiO_?pYOj*rXm@NeP|G!>jkXnIC0XY7j^Hz>kEhkJ3Y^Xo3 z!7$h)>eeJhVu8YEp?hHqDac?XB*O9#Vpyd(gNBXBz9JG=ePnQwwTEHrdpw76T612v zVJx3lK94h8x0?bjKLh*koT12D+peN-bg8c3S}uGYO+kDcqk6nEh$P`U{-TLjCv^{% zfW47za-OTv%cIY(j0mqlDX$(nzDJ)af(yp0X@}mS3zqypG<((@T;YkQu&yI<4;mLY zS3~?S=8iAXMN)DeT11|8Dz6p;*l<6SnvTugin|5i+=(IFneX_+V3;n{5zbx+V-lNl zWL~jleo;)WoTpBVQZ9t2uAo>hD7Oa@0KbG1FDAM-(EU>>{TWZ5Y&o4VS%)J^O;@%K zCxnUSa6KKMz5X!oT1(`1R|wzcU@JJ@=4k8dxHHbHv(T?Q;$JM+P51mWWb%C1)EST5 zN_XT`jhWUJZFlHOj|jJacXKCm-a&}|j`)QpJg^AP$?#8T3JziTB`e)qr{CcS0)VG) z{6>Fb_~+AdXK4Jwu(ZdYR%%cDdkfUwiRT|QZvHxyqZMZPa>x04CpFx=_YZNsV^%!c z_m4dB*IW2}ths^%c|zEDVu<+a&VPPjg^n%1ax>l_2af*pL0VtgT5pKkZwv#69RDVX z-UI-D=kv+)a#_Zs_gi=)@-pY90CVz|##kO^TII`38RveNbA&TyN-w64*Y`Yr^BO3Og4`8TuY zB7v|rOu=%sUL@zX1M=-@CvzK3R z9HE0}CNj}**~kjiGo{C_nY!qX&lgHrmGaJ|GPC>O2>k(3