-
Notifications
You must be signed in to change notification settings - Fork 8
/
InceptionV4.py
269 lines (206 loc) · 9.12 KB
/
InceptionV4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from __future__ import print_function
import numpy as np
import tensorflow as tf
import h5py
import gc
import inception_v4
from keras.utils import np_utils
from keras import optimizers
import Dataset_loader
from keras.callbacks import ModelCheckpoint
from keras.models import load_model
from keras.backend.tensorflow_backend import dtype
from keras.utils.io_utils import HDF5Matrix
from Dataset_loader import getNumSamples
from scipy import misc
# Parameters
DATASET_COMMON_FOLDER = '/home/alex/Datasets/Yuan/'
NET_NAME = 'InceptionV4'
BATCH_SIZE = 10
EPOCHS = 10
NUMBER_OF_CLASSES = 2
INPUT_FRAME_SIZE = 299
def generate_arrays(train_filename, batch_size, max_sample, new_size):
batch_features = np.zeros((batch_size, new_size, new_size, 3))
batch_labels = np.zeros((batch_size,1))
current_sample_idx = 0
combined_num = 0
print('GENERATOR: Train file = {}, batch = {}, total samples = {}'.format(train_filename, batch_size, max_sample))
while 1:
reached_end = False
start_idx = current_sample_idx
end_idx = batch_size + start_idx
if (end_idx > max_sample):
end_idx = batch_size
reached_end = True
print('GENERATOR: Start idx = {}, end_idx = {}, total samples = {}'.format(start_idx, end_idx, max_sample))
x = HDF5Matrix(train_filename, 'data', start=start_idx, end=end_idx)
y = HDF5Matrix(train_filename, 'labels', start=start_idx, end=end_idx)
x = np.array(x)
y = np.array(y)
y = np_utils.to_categorical(y, NUMBER_OF_CLASSES)
current_sample_idx = end_idx
if reached_end:
current_sample_idx = 0
print("Shapes. x = {}, y = {}".format(x.shape, y.shape))
#batch_labels = np_utils.to_categorical(batch_labels, NUMBER_OF_CLASSES)
yield(x,y)
variant1 = ['set1_{}.h5'.format(INPUT_FRAME_SIZE), 'set2_{}.h5'.format(INPUT_FRAME_SIZE)]
variant2 = ['set2_{}.h5'.format(INPUT_FRAME_SIZE), 'set1_{}.h5'.format(INPUT_FRAME_SIZE)]
variant3 = ['set3_{}.h5'.format(INPUT_FRAME_SIZE), 'set4_{}.h5'.format(INPUT_FRAME_SIZE)]
variant4 = ['set4_{}.h5'.format(INPUT_FRAME_SIZE), 'set3_{}.h5'.format(INPUT_FRAME_SIZE)]
variants = []
variants.append(variant1)
variants.append(variant2)
# variants.append(variant3)
variants.append(variant4)
for num_variant in range(len(variants)):
TRAIN_SET = DATASET_COMMON_FOLDER + variants[num_variant][0]
TEST_SET = DATASET_COMMON_FOLDER + variants[num_variant][1]
print('Workings with sets: {} and {}'.format(TRAIN_SET, TEST_SET))
# Load dataset
x_train = []
y_tr = HDF5Matrix(TRAIN_SET, 'labels')
x_train = HDF5Matrix(TRAIN_SET, 'data')
x_train = np.array(x_train)
y_tr = np.array(y_tr)
x_tr = []
y_train = np_utils.to_categorical(y_tr, NUMBER_OF_CLASSES)
x_test = HDF5Matrix(TEST_SET, 'data')
y_t = HDF5Matrix(TEST_SET, 'labels')
x_test = np.array(x_test)
y_t = np.array(y_t)
total_samples_test = getNumSamples(variants[num_variant][1][0:4]+'.h5')
#x_test = np.zeros((total_samples_test, INPUT_FRAME_SIZE, INPUT_FRAME_SIZE, 3), dtype='float16')
#y_test = np.zeros((total_samples_test,1), dtype='float16')
y_test = np_utils.to_categorical(y_t, NUMBER_OF_CLASSES)
print('Test dataset loaded')
print('Testing dataset size = ', x_test.shape)
# Convert class vectors to binary class matrices
print('Loading model')
# Create Inception V4 model
model = inception_v4.create_model(num_classes=NUMBER_OF_CLASSES, dropout_keep_prob=0.2, weights=None)
print("Compiling model")
rms_prop = optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(loss='categorical_crossentropy',
optimizer=rms_prop,
metrics=['accuracy', 'mse'])
print("Model loaded and compiled")
# autosave best Model
best_model_file = '{}_{}_{}_B{}_E{}_F{}.h5'.format(NET_NAME, TRAIN_SET[-11:-7], TEST_SET[-11:-7], BATCH_SIZE, EPOCHS, INPUT_FRAME_SIZE)
best_model = ModelCheckpoint(best_model_file, monitor='val_loss', verbose=1, save_best_only=True)
print("*************************************")
print("Fitting model")
print("*************************************")
model.fit(x_train, y_train,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
verbose=1,
callbacks=[best_model], # this callback can be de-activated
validation_data=(x_test, y_test))
# datagen = ImageDataGenerator(
# featurewise_center=False, # set input mean to 0 over the dataset
# samplewise_center=False, # set each sample mean to 0
# featurewise_std_normalization=False, # divide inputs by std of the dataset
# samplewise_std_normalization=False, # divide each input by its std
# zca_whitening=False, # apply ZCA whitening
# rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
# width_shift_range=0, # randomly shift images horizontally (fraction of total width)
# height_shift_range=0, # randomly shift images vertically (fraction of total height)
# horizontal_flip=False, # randomly flip images
# vertical_flip=False) # randomly flip images
#
# # Compute quantities required for feature-wise normalization
# # (std, mean, and principal components if ZCA whitening is applied).
# datagen.fit(x_train)
# total_samples_train = getNumSamples(variants[num_variant][0][0:4]+'.h5')
# model.fit_generator(generate_arrays(TRAIN_SET,
# batch_size=BATCH_SIZE,
# max_sample=total_samples_train,
# new_size=INPUT_FRAME_SIZE),
# BATCH_SIZE, EPOCHS,
# verbose=2,
# callbacks=[best_model],
# validation_data=(x_test, y_test))
print("Finished fitting model")
score = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
print('All metrics', score)
#x_train = HDF5Matrix(TRAIN_SET, 'data')
#y_train = HDF5Matrix(TRAIN_SET, 'labels')
res = model.predict(x_test)
res_label = np.argmax(res,1)
print('\ntest:', sum(res_label==y_t)/float(len(y_t))*100)
res = model.predict(x_train)
res_label = np.argmax(res,1)
print('train:', sum(res_label==y_tr)/float(len(y_tr))*100)
print("\n\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\nFixing the model file error")
f = h5py.File(best_model_file, 'r+')
del f['optimizer_weights']
f.close()
print("Done\n\n")
print("Update '{}'".format(best_model_file))
with h5py.File(best_model_file, 'a') as f:
if 'optimizer_weights' in f.keys():
del f['optimizer_weights']
y_train = np_utils.to_categorical(y_tr, NUMBER_OF_CLASSES)
print('result on best model')
print('Loading the best model...')
model = load_model(best_model_file)
print('Best Model loaded!')
print('Loading test dataset')
x_test_temp = HDF5Matrix(TEST_SET, 'data')
print('Copying to Numpy array')
x_test = np.array(x_test_temp)
print('Deleting temp data')
del x_test_temp
print('GC!')
gc.collect()
print('Loading labels')
y_t_temp = HDF5Matrix(TEST_SET, 'labels')
print('Copying to Numpy array')
y_t = np.array(y_t_temp)
print('Deleting temp data')
del y_t_temp
print('GC!')
gc.collect()
print('Predicting')
res = model.predict(x_test)
res_label = np.argmax(res,1)
acc_test = sum(res_label==y_t)/float(len(y_t))*100
print('test:', sum(res_label==y_t)/float(len(y_t))*100)
del x_test
del y_t
gc.collect()
results_filename = '{}_{}_{}_B{}_E{}_F{}_test.txt'.format(NET_NAME, TRAIN_SET[-11:-7], TEST_SET[-11:-7], BATCH_SIZE, EPOCHS, INPUT_FRAME_SIZE)
f = open(results_filename, 'wb')
data = 'Test accuracy = {}'.format(acc_test)
f.write(data)
f.close()
print('Loading labels')
x_train_temp = HDF5Matrix(TRAIN_SET, 'data')
print('Copying to Numpy array')
x_train = np.array(x_train_temp)
print('Deleting temp data')
del x_train_temp
print('GC!')
gc.collect()
print('Loading labels')
y_tr_temp = HDF5Matrix(TRAIN_SET, 'labels')
print('Copying to Numpy array')
y_tr = np.array(y_tr_temp)
print('Deleting temp data')
del y_tr_temp
print('GC!')
gc.collect()
print('Predicting')
res = model.predict(x_train)
res_label = np.argmax(res,1)
acc_train = sum(res_label==y_tr)/float(len(y_tr))*100
print('train:', sum(res_label==y_tr)/float(len(y_tr))*100)
results_filename = '{}_{}_{}_B{}_E{}_F{}_train.txt'.format(NET_NAME, TRAIN_SET[-11:-7], TEST_SET[-11:-7], BATCH_SIZE, EPOCHS, INPUT_FRAME_SIZE)
f = open(results_filename, 'wb')
data = 'Train accuracy = {}'.format(acc_train)
f.write(data)
f.close()