-
Notifications
You must be signed in to change notification settings - Fork 0
/
transaction.go
234 lines (190 loc) · 6.12 KB
/
transaction.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
package main
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"encoding/gob"
"encoding/hex"
"fmt"
"log"
"math/big"
"strings"
)
const subsidy = 10
type Transaction struct {
ID []byte
Vin []TXInput
Vout []TXOutput
}
// check if the transaction is coinbase
func (tx Transaction) IsCoinbase() bool {
return len(tx.Vin) == 1 && len(tx.Vin[0].Txid) == 0 && tx.Vin[0].Vout == -1
}
// serialize `tx`
func (tx Transaction) Serialize() []byte {
var encoded bytes.Buffer
enc := gob.NewEncoder(&encoded)
err := enc.Encode(tx)
logErr(err)
return encoded.Bytes()
}
// serialize `tx` and hash it with SHA-256 algorithm.
func (tx *Transaction) Hash() []byte {
var hash [32]byte
txCopy := *tx
txCopy.ID = []byte{}
hash = sha256.Sum256(txCopy.Serialize())
return hash[:]
}
// return a transaction which empties Sinature and PubKey filed in all TXInpus
func (tx *Transaction) TrimmedCopy() Transaction {
var inputs []TXInput
var outputs []TXOutput
for _, vin := range tx.Vin {
inputs = append(inputs, TXInput{vin.Txid, vin.Vout, nil, nil})
}
for _, vout := range tx.Vout {
outputs = append(outputs, TXOutput{vout.Value, vout.PubKeyHash})
}
txCopy := Transaction{tx.ID, inputs, outputs}
return txCopy
}
// signs each input of `tx`
func (tx *Transaction) Sign(privKey ecdsa.PrivateKey,
prevTXs map[string]Transaction) {
if tx.IsCoinbase() {
return
}
txCopy := tx.TrimmedCopy()
for inID, vin := range txCopy.Vin {
prevTx := prevTXs[hex.EncodeToString(vin.Txid)] // previous transactions
txCopy.Vin[inID].Signature = nil
txCopy.Vin[inID].PubKey = prevTx.Vout[vin.Vout].PubKeyHash
txCopy.ID = txCopy.Hash() //? SegWit: txid doesn't include signature
txCopy.Vin[inID].PubKey = nil // what does this mean?
// tutorial says "After getting the hash we should reset the PubKey
// field, so it doesn’t affect further iterations."
// Signing process
// 1. Empty Signature and PubKey filed in all TXInputs
// 2. Fill PubKey field in corresponding TXInput
// 3. Hash whole transaction
// 4. Sign the hash value
r, s, err := ecdsa.Sign(rand.Reader, &privKey, txCopy.ID)
logErr(err)
signature := append(r.Bytes(), s.Bytes()...)
tx.Vin[inID].Signature = signature
}
}
// check if Pubkey in `tx` TXInputs could verify
// Signature in transaction TXOutputs from `prevTXs`
// prevTXs structure: Transaction.ID->Transaction
func (tx *Transaction) Verify(prevTXs map[string]Transaction) bool {
if tx.IsCoinbase() { // coinbase transaction don't need verification
return true
}
txCopy := tx.TrimmedCopy()
curve := elliptic.P256()
for inID, vin := range tx.Vin {
prevTx := prevTXs[hex.EncodeToString(vin.Txid)] // previous transactions
txCopy.Vin[inID].Signature = nil
txCopy.Vin[inID].PubKey = prevTx.Vout[vin.Vout].PubKeyHash
txCopy.ID = txCopy.Hash()
txCopy.Vin[inID].PubKey = nil
// signature (r, s) is a pair of numbers
r := big.Int{}
s := big.Int{}
sigLen := len(vin.Signature)
r.SetBytes(vin.Signature[:(sigLen / 2)])
s.SetBytes(vin.Signature[(sigLen / 2):])
// public key (x, y) is a pair of coordinates
x := big.Int{}
y := big.Int{}
keyLen := len(vin.PubKey)
x.SetBytes(vin.PubKey[:(keyLen / 2)])
y.SetBytes(vin.PubKey[(keyLen / 2):])
rawPubKey := ecdsa.PublicKey{curve, &x, &y}
if ecdsa.Verify(&rawPubKey, txCopy.ID, &r, &s) == false {
return false
}
}
return true
}
// create a new coinbase transaction
func NewCoinbaseTX(to, data string) *Transaction {
if data == "" {
data = fmt.Sprintf("Reward to '%s'", to)
}
txin := TXInput{[]byte{}, -1, nil, []byte(data)} // coinbase have an empty TXInput
txout := NewTXOutput(subsidy, to)
tx := Transaction{nil, []TXInput{txin}, []TXOutput{*txout}}
tx.ID = tx.Hash()
return &tx
}
// create a general transaction
func NewUTXOTransaction(from, to string, amount int, UTXOSet *UTXOSet) *Transaction {
var inputs []TXInput
var outputs []TXOutput
wallets, err := NewWallets() // load wallets
logErr(err)
wallet := wallets.GetWallet(from) // 1. load wallet by address `from`
pubKeyHash := HashPubKey(wallet.PublicKey)
// 2. find UTXO that address `from` can spend
acc, validOutputs := UTXOSet.FindSpendableOutputs(pubKeyHash, amount)
if acc < amount {
log.Print("ERROR: Not enough funds")
return nil
}
// 3. construct TXInputs
for txid, outs := range validOutputs {
txID, err := hex.DecodeString(txid) // decode UTXO's txid into []byte
logErr(err)
for _, out := range outs {
input := TXInput{txID, out, nil, wallet.PublicKey}
inputs = append(inputs, input)
}
}
// 4. construct TXOutputs
outputs = append(outputs, *NewTXOutput(amount, to))
if acc > amount { // change(找零)
outputs = append(outputs, *NewTXOutput(acc-amount, from))
}
tx := Transaction{nil, inputs, outputs}
tx.ID = tx.Hash()
UTXOSet.Blockchain.SignTransaction(&tx, wallet.PrivateKey)
return &tx
}
// return a human-readable representation of a transaction
func (tx Transaction) String() string {
var lines []string
if tx.IsCoinbase() {
lines = append(lines, fmt.Sprintf("--- Coinbase %x:", tx.ID))
lines = append(lines, fmt.Sprintf(" Data: %s:", tx.Vin[0].PubKey))
} else {
lines = append(lines, fmt.Sprintf("--- Transaction %x:", tx.ID))
for i, input := range tx.Vin {
lines = append(lines, fmt.Sprintf(" Input %d:", i))
lines = append(lines, fmt.Sprintf(" TXID: %x", input.Txid))
lines = append(lines, fmt.Sprintf(" Out: %d", input.Vout))
lines = append(lines, fmt.Sprintf(" Signature: %x", input.Signature))
lines = append(lines, fmt.Sprintf(" PubKey: %x", input.PubKey))
}
}
for i, output := range tx.Vout {
lines = append(lines, fmt.Sprintf(" Output %d:", i))
lines = append(lines, fmt.Sprintf(" Value: %d", output.Value))
lines = append(lines, fmt.Sprintf(" Script: %x", output.PubKeyHash))
}
return strings.Join(lines, "\n")
}
// DeserializeTransaction deserializes a transaction
func DeserializeTransaction(data []byte) Transaction {
var transaction Transaction
decoder := gob.NewDecoder(bytes.NewReader(data))
err := decoder.Decode(&transaction)
if err != nil {
log.Panic(err)
}
return transaction
}