-
Notifications
You must be signed in to change notification settings - Fork 2
/
Meboot time series resampling.R
606 lines (527 loc) · 25.8 KB
/
Meboot time series resampling.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
# Meboot time series resampling
# Andrew Bannerman 12.29.2017
require(xts)
require(data.table)
require(ggplot2)
require(lubridate)
require(magrittr)
require(scales)
require(reshape2)
require(PerformanceAnalytics)
require(dplyr)
require(TTR)
require(meboot)
require(np)
######### Download ETF Data ###############
# Load Syntehtic and join to alpha vantage adjusted prices
# Load synthetic VXX and XIV data
library(readxl)
synth <- read_excel("D:/R Projects/Final Scripts/VIX_term_structure/vix-funds-models-no-formulas.xls", col_names = TRUE)
synth1 <- read_excel("D:/R Projects/Final Scripts/VIX_term_structure/vix-mt-funds-models-no-formulas.xls", col_names = TRUE)
synth <- as.data.frame(synth)
synth1 <- as.data.frame(synth1)
# Extract synthetic series
vxx.synth <- data.frame(synth$Date, synth$'VXX calc')
xiv.synth <- data.frame(synth$Date, synth$'XIV calc')
ziv.synth <- data.frame(synth1$Date, synth1$'ZIV calc')
vxz.synth <- data.frame(synth1$Date, synth1$'VXZ calc')
colnames(vxx.synth)[1] <- "Date"
colnames(vxx.synth)[2] <- "vxx_close"
colnames(xiv.synth)[1] <- "Date"
colnames(xiv.synth)[2] <- "xiv_close"
colnames(ziv.synth)[1] <- "Date"
colnames(ziv.synth)[2] <- "ziv_close"
colnames(vxz.synth)[1] <- "Date"
colnames(vxz.synth)[2] <- "vxz_close"
vxx.synth$Date <- ymd(vxx.synth$Date)
xiv.synth$Date <- ymd(xiv.synth$Date)
ziv.synth$Date <- ymd(ziv.synth$Date)
vxz.synth$Date <- ymd(vxz.synth$Date)
# Download SPY data
# Note you need tyo place your API key...your_key_here
SPY <- fread("https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=SPY&outputsize=full&apikey=your_api_key&datatype=csv") #fread() data.table for downloading directly to a data frame
SPY$timestamp <- ymd(SPY$timestamp) #Lubridate to change character date to date format
SPY <- arrange(SPY,timestamp) #dplyr to sort data frame by date ascending order
colnames(SPY)[1] <- "Date"
SPY$Date <- ymd(SPY$Date)
SPY <- as.data.frame(SPY)
SPY <- subset(SPY, Date >= as.POSIXct("2004-03-26") ) # synthetic data start
head(SPY)
VXX <- fread("https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=VXX&outputsize=full&apikey=your_api_key&datatype=csv") #fread() data.table for downloading directly to a data frame
VXX$timestamp <- ymd(VXX$timestamp) #Lubridate to change character date to date format
VXX <- arrange(VXX,timestamp) #dplyr to sort data frame by date ascending order
colnames(VXX)[1] <- "Date"
VXX$Date <- ymd(VXX$Date)
VXX <- as.data.frame(VXX)
head(VXX)
XIV <- fread("https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=XIV&outputsize=full&apikey=your_api_key&datatype=csv") #fread() data.table for downloading directly to a data frame
XIV$timestamp <- ymd(XIV$timestamp) #Lubridate to change character date to date format
XIV <- arrange(XIV,timestamp) #dplyr to sort data frame by date ascending order
colnames(XIV)[1] <- "Date"
XIV$Date <- ymd(XIV$Date)
XIV <- as.data.frame(XIV)
head(XIV)
#XIV <- subset(XIV, Date >= as.POSIXct("2012-01-01"))
ZIV <- fread("https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=ZIV&outputsize=full&apikey=your_api_key&datatype=csv") #fread() data.table for downloading directly to a data frame
ZIV$timestamp <- ymd(ZIV$timestamp) #Lubridate to change character date to date format
ZIV <- arrange(ZIV,timestamp) #dplyr to sort data frame by date ascending order
colnames(ZIV)[1] <- "Date"
ZIV$Date <- ymd(ZIV$Date)
ZIV <- as.data.frame(ZIV)
head(ZIV)
VXZ <- fread("https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=VXZ&outputsize=full&apikey=your_api_key&datatype=csv") #fread() data.table for downloading directly to a data frame
VXZ$timestamp <- ymd(VXZ$timestamp) #Lubridate to change character date to date format
VXZ <- arrange(VXZ,timestamp) #dplyr to sort data frame by date ascending order
colnames(VXZ)[1] <- "Date"
VXZ$Date <- ymd(VXZ$Date)
VXZ <- as.data.frame(VXZ)
tail(VXZ)
# Join sythentic data to alpha vantage
vxx.synth <- subset(vxx.synth, Date <= as.POSIXct("2009-01-29"))
xiv.synth <- subset(xiv.synth, Date <= as.POSIXct("2010-11-29"))
ziv.synth <- subset(ziv.synth, Date <= as.POSIXct("2010-11-29"))
vxz.synth <- subset(vxz.synth, Date <= as.POSIXct("2009-02-19"))
# Subset only date and close from alpha vantage data
VXX <- VXX[ -c(2:5, 7:9) ] # subset adjusted close
XIV <- XIV[ -c(2:5, 7:9) ] # subset adjusted close
ZIV <- ZIV[ -c(2:5, 7:9) ] # subset adjusted close
VXZ <- VXZ[ -c(2:5, 7:9) ] # subset adjusted close
SPY <- SPY[ -c(3:5, 7:9) ] # subset adjusted close
colnames(VXX)[2] <- "vxx_close"
colnames(XIV)[2] <- "xiv_close"
colnames(ZIV)[2] <- "ziv_close"
colnames(VXZ)[2] <- "vxz_close"
colnames(SPY)[2] <- "spy_open"
colnames(SPY)[3] <- "spy_close"
# row bind
VXX <- rbind(vxx.synth,VXX)
XIV <- rbind(xiv.synth,XIV)
ZIV <- rbind(ziv.synth,ZIV)
VXZ <- rbind(vxz.synth,VXZ)
df <- cbind(VXX,XIV,ZIV,VXZ,SPY)
tail(df)
# Download Spot VIX Price and VXV Price from CBOE website
VIX_cboe <- fread("http://www.cboe.com/publish/scheduledtask/mktdata/datahouse/vixcurrent.csv")
VIX_cboe <- as.data.frame(VIX_cboe)
VIX_cboe <- VIX_cboe[2:nrow(VIX_cboe), ]
colnames(VIX_cboe)[1] = "Date"
colnames(VIX_cboe)[2] = "vix_open"
colnames(VIX_cboe)[3] = "vix_high"
colnames(VIX_cboe)[4] = "vix_low"
colnames(VIX_cboe)[5] = "vix_close"
VIX_cboe$Date <- mdy(VIX_cboe$Date)
cols <-c(2:5)
VIX_cboe[,cols] %<>% lapply(function(x) as.numeric(as.character(x)))
VIX_cboe <- subset(VIX_cboe, Date >= as.POSIXct("2007-12-04") )
# Download VXV Data From CBOE website
VXV_cboe <- fread("http://www.cboe.com/publish/scheduledtask/mktdata/datahouse/vix3mdailyprices.csv")
VXV_cboe <- as.data.frame(VXV_cboe)
VXV_cboe <- VXV_cboe[3:nrow(VXV_cboe), ]
colnames(VXV_cboe)[1] = "Date"
colnames(VXV_cboe)[2] = "vxv_cboe_open"
colnames(VXV_cboe)[3] = "vxv_cboe_high"
colnames(VXV_cboe)[4] = "vxv_cboe_low"
colnames(VXV_cboe)[5] = "vxv_cboe_close"
VXV_cboe$Date <- mdy(VXV_cboe$Date)
cols <-c(2:5)
VXV_cboe[,cols] %<>% lapply(function(x) as.numeric(as.character(x)))
# Download VXMT Data from CBOE website
VXMT_cboe <- fread("http://www.cboe.com/publish/scheduledtask/mktdata/datahouse/vxmtdailyprices.csv")
VXMT_cboe <- as.data.frame(VXMT_cboe)
VXMT_cboe <- VXMT_cboe[3:nrow(VXMT_cboe), ]
colnames(VXMT_cboe)[1] = "Date"
colnames(VXMT_cboe)[2] = "vxmt_cboe_open"
colnames(VXMT_cboe)[3] = "vxmt_cboe_high"
colnames(VXMT_cboe)[4] = "vxmt_cboe_low"
colnames(VXMT_cboe)[5] = "vxmt_cboe_close"
VXMT_cboe$Date <- mdy(VXMT_cboe$Date)
cols <-c(2:5)
VXMT_cboe[,cols] %<>% lapply(function(x) as.numeric(as.character(x)))
# Join VIX, VIX3m (VXV) and VXMT CBOE data to ETF df
cboe.df <- merge(VIX_cboe,VXV_cboe, by="Date")
cboe.df <- merge(cboe.df,VXMT_cboe, by="Date")
tail(cboe.df)
df <- df[,c(-3,-5,-7,-9)] # Drop unused dates
df <- full_join(df, cboe.df, by = c("Date" = "Date"))
# Remove last rows
nrow <- NROW(df)-2
df <- head(df,nrow)
tail(df)
############################################
# Back Test VXV / VXMT Ratio
# Find best params without bootstrapping
############################################
# Calculate Close-to-Close returns
df$vxx.close.ret <- ROC(df$vxx_close, type = c("discrete"))
df$xiv.close.ret <- ROC(df$xiv_close, type = c("discrete"))
# VXV / VXMT Ratio
df$vxv.vxmt.ratio <- df$vxv_cboe_close / df$vxmt_cboe_close
df[is.na(df)] <- 0
head(df)
# Calculate SMA of ratio
numdays <- 2:500
getSMA <- function(numdays) {
function(df) {
SMA(df[,"vxv.vxmt.ratio"], numdays) # Calls TTR package to create SMA
}
}
# Create a matrix to put the SMAs in
sma.matrix <- matrix(nrow=nrow(df), ncol=0)
# Loop for filling it
for (i in numdays) {
sma.matrix <- cbind(sma.matrix, getSMA(i)(df))
}
# Rename columns
colnames(sma.matrix) <- sapply(numdays, function(n)paste("ratio.sma.n", n, sep=""))
# Bind to existing dataframe
df <- cbind(df, sma.matrix)
tail(df)
##############################################
# Optimize Strategy Params
##############################################
num.days <- 2:300
i=3
# Initialize data frame
data_output_df <- data.frame()
# Optimize #########
optIMIZE = function(x){
#spx.sma <- df[,paste0("close.sma.n", sma[i])]
names(df)
# Enter buy / sell rules
#df$vxx.signal <- ifelse(df$vxv.vxmt.ratio > 1 & df$vxv.vxmt.ratio > df$ratio.sma , 1,0)
#df$xiv.signal <- ifelse(df$vxv.vxmt.ratio < 1 & df$vxv.vxmt.ratio < df$ratio.sma , 1,0)
df$vxx.signal <- ifelse(df$vxv.vxmt.ratio > 1 & df$vxv.vxmt.ratio > df[,paste0("ratio.sma.n", num.days[i])], 1,0)
df$xiv.signal <- ifelse(df$vxv.vxmt.ratio < 1 & df$vxv.vxmt.ratio < df[,paste0("ratio.sma.n", num.days[i])], 1,0)
# lag signal by two forward days
# CBOE data is available next day
df$vxx.signal <- lag(df$vxx.signal,2) # Note k=1 implies a move *forward*
df$xiv.signal <- lag(df$xiv.signal,2) # Note k=1 implies a move *forward*
df[is.na(df)] <- 0 # Set NA to 0
# Calculate equity curves
df$vxx.signal.ret <- df$vxx.signal * df$vxx.close.ret
df$xiv.signal.ret <- df$xiv.signal * df$xiv.close.ret
# Combine signals
df$total.signal.ret <- df$vxx.signal.ret + df$xiv.signal.ret
# Pull select columns from data frame to make XTS whilst retaining formats
xts1 = xts(df$vxx.signal.ret, order.by=as.Date(df$Date, format="%m/%d/%Y"))
xts2 = xts(df$xiv.signal.ret, order.by=as.Date(df$Date, format="%m/%d/%Y"))
xts3 = xts(df$total.signal.ret, order.by=as.Date(df$Date, format="%m/%d/%Y"))
tail(xts3)
# Join XTS together
compare <- cbind(xts1,xts2,xts3)
# Use the PerformanceAnalytics package for trade statistics
require(PerformanceAnalytics)
colnames(compare) <- c("vxx","xiv","combined")
#charts.PerformanceSummary(compare,main="Long when current month is higher than previous 12 month", wealth.index=TRUE, colorset=rainbow12equal)
# performance.table <- rbind(table.AnnualizedReturns(compare),maxDrawdown(compare), CalmarRatio(compare),table.DownsideRisk(compare))
# drawdown.table <- rbind(table.Drawdowns(xts3))
#dev.off()
# logRets <- log(cumprod(1+compare))
# chart.TimeSeries(logRets, legend.loc='topleft', colorset=rainbow12equal,main="Log Returns")
#print(performance.table)
#print(drawdown.table)
cum.ret <- Return.cumulative(xts3, geometric = TRUE)
annualized <- Return.annualized(xts3, scale = NA, geometric = TRUE)
dd <- maxDrawdown(xts3)
sharpe <- SharpeRatio.annualized(xts3, Rf = 0, scale = NA, geometric = TRUE)
# Create data output of rep and close.diff columns rbind
data_output_df <- data.frame("Annualized Return" = annualized,"Annualized Sharpe" = sharpe,"Cumulative Return" = cum.ret,"Maximum Draw Down" = dd)
}
for (i in 1:length(num.days)){ # Length of optimization
tryCatch({
temp <- optIMIZE(num.days[[i]])
rownames(temp) <- paste0("",num.days[i])
#cum_ret <- rbind.data.frame(cum_ret, temp)
data_output_df <- rbind.data.frame(data_output_df,temp)
ptm0 <- proc.time()
Sys.sleep(0.1)
ptm1=proc.time() - ptm0
time=as.numeric(ptm1[3])
cat('\n','Iteration',i,'took', time, "seconds to complete")
}, error = function(e) { print(paste("i =", i, "failed:")) })
}
# Join SMA number to data frame
data_output_df <- data.frame(data_output_df,num.days)
show <- data_output_df[51:70,]
# Plot
colnames(data_output_df)
library(ggplot2)
ggplot(data=data_output_df, aes(x=num.days,Annualized.Return))+
geom_bar(stat="identity")+
theme_classic()+
scale_x_continuous(breaks = seq(min(data_output_df$num.days), max(data_output_df$num.days)))+
theme(axis.text.x = element_text(angle = 90, hjust = 0.5,size=15))+
ggtitle("VXV/VXMT Volatility Strategy - Optimized sma vzx/vxmt ratio",subtitle="2008 to present")+
theme(plot.title = element_text(hjust=0.5),plot.subtitle =element_text(hjust=0.5))+
geom_rect(aes(xmin=51,xmax=70,ymin=0,ymax=Inf),alpha=0.01,fill="#CC6666")+
geom_rect(aes(xmin=117,xmax=161,ymin=0,ymax=Inf),alpha=0.01,fill="#CC6666")+
annotate("text", label = "sma 51 to 70", x = 60, y = .65, color = "red")+
annotate("text", label = "sma 117 to 161", x = 135, y = .65, color = "red")
#scale_y_continuous(breaks = seq(min(data_output_df$Annualized.Return), max(data_output_df$Annualized.Return),by=0.0010))
acf(df$xiv_close)
####### End Back Test Original Sample ##########
############################
# Meboot
# Generate Maximum Entropy Bootstrapped Time Series Ensemble
############################
# XIV
df[is.na(df)] <- 0
df <- head(df,NROW(df)-1) # Remove missng value...
tail(df$xiv_close,10)
xiv.boot <- meboot(df$xiv_close, reps=100, trim=list(trim=0.10, xmin=NULL, xmax=NULL), reachbnd=FALSE,
expand.sd=TRUE, force.clt=FALSE, scl.adjustment = FALSE, sym = FALSE,
elaps=TRUE, colsubj, coldata, coltimes)
# Place meboot results in data frame
xiv.ensemble.df <- data.frame(xiv.boot$ensemble)
xiv.ensemble.df <- data.frame(xiv.ensemble.df,"Date"=df$Date)
# Melt for plotting
xiv.plot.df <- melt(xiv.ensemble.df,id.vars = "Date")
# Plot ggplot2
ggplot(data = xiv.plot.df, aes(x=Date,y=value))+
geom_line(aes(group = variable))+
theme_classic()+
theme(legend.position = "none")+
geom_line(data=df,aes(x=Date,y=xiv_close,colour="red"))+
theme(plot.title = element_text(hjust=0.5),plot.subtitle =element_text(hjust=0.5))+
ggtitle("Resampled Time Series - XIV",subtitle="100 Iterations")
# VXX
vxx.boot <- meboot(df$vxx_close, reps=100, trim=list(trim=0.10, xmin=NULL, xmax=NULL), reachbnd=FALSE,
expand.sd=TRUE, force.clt=FALSE, scl.adjustment = FALSE, sym = FALSE,
elaps=TRUE, colsubj, coldata, coltimes)
# Place meboot results in data frame
vxx.ensemble.df <- data.frame(vxx.boot$ensemble)
vxx.ensemble.df <- data.frame(vxx.ensemble.df,"Date"=df$Date)
# Melt for plotting
vxx.plot.df <- melt(vxx.ensemble.df,id.vars = "Date")
# Plot ggplot2
ggplot(data = vxx.plot.df, aes(x=Date,y=value))+
geom_line(aes(group = variable))+
theme_classic()+
theme(legend.position = "none")+
geom_line(data=df,aes(x=Date,y=vxx_close,colour="red"))+
theme(plot.title = element_text(hjust=0.5),plot.subtitle =element_text(hjust=0.5))+
ggtitle("Resampled Time Series - VXX", subtitle="100 Iterations")
# VXV
vxv.boot <- meboot(df$vxv_cboe_close, reps=100, trim=list(trim=0.10, xmin=NULL, xmax=NULL), reachbnd=FALSE,
expand.sd=TRUE, force.clt=FALSE, scl.adjustment = FALSE, sym = FALSE,
elaps=TRUE, colsubj, coldata, coltimes)
# Place meboot results in data frame
vxv.ensemble.df <- data.frame(vxv.boot$ensemble)
vxv.ensemble.df <- data.frame(vxv.ensemble.df,"Date"=df$Date)
# Melt for plotting
vxv.plot.df <- melt(vxv.ensemble.df,id.vars = "Date")
# Plot ggplot2
ggplot(data = vxv.plot.df, aes(x=Date,y=value))+
geom_line(aes(group = variable))+
theme_classic()+
theme(legend.position = "none")+
geom_line(data=df,aes(x=Date,y=vxv_cboe_close,colour="red"))+
theme(plot.title = element_text(hjust=0.5),plot.subtitle =element_text(hjust=0.5))+
ggtitle("Resampled Time Series - VXV", subtitle="100 Iterations")
# VXMT
vxmt.boot <- meboot(df$vxmt_cboe_close, reps=100, trim=list(trim=0.10, xmin=NULL, xmax=NULL), reachbnd=FALSE,
expand.sd=TRUE, force.clt=FALSE, scl.adjustment = FALSE, sym = FALSE,
elaps=TRUE, colsubj, coldata, coltimes)
# Place meboot results in data frame
vxmt.ensemble.df <- data.frame(vxmt.boot$ensemble)
vxmt.ensemble.df <- data.frame(vxmt.ensemble.df,"Date"=df$Date)
# Melt for plotting
vxmt.plot.df <- melt(vxmt.ensemble.df,id.vars = "Date")
# Plot ggplot2
ggplot(data = vxmt.plot.df, aes(x=Date,y=value))+
geom_line(aes(group = variable))+
theme_classic()+
theme(legend.position = "none")+
geom_line(data=df,aes(x=Date,y=vxmt_cboe_close,colour="red"))+
theme(plot.title = element_text(hjust=0.5),plot.subtitle =element_text(hjust=0.5))+
ggtitle("Resampled Time Series - VXMT")
# Back test optimal band found in initial sample over boot strapped series
df.boot <- data.frame("Date" = xiv.ensemble.df$Date)
# boot strap sample series results
# Initialize list
boot_output <- list()
#Drop dates (not used for plotting)
xiv.ensemble.df <- xiv.ensemble.df[,-101]
vxx.ensemble.df <- vxx.ensemble.df[,-101]
vxv.ensemble.df <- vxv.ensemble.df[,-101]
vxmt.ensemble.df <- vxmt.ensemble.df[,-101]
i=1
sma <- rep(51:70,each=length(xiv.ensemble.df))
length.dfs <- rep(1:100,11)
for (i in 1:length(length.dfs)) {
tryCatch({
############################################
# Back Test VXV / VXMT Ratio
# Find best params without bootstrapping
############################################
# Calculate Close-to-Close returns
df.boot$vxx.close.ret <- ROC(vxx.ensemble.df[,length.dfs[i]], type = c("discrete"))
df.boot$xiv.close.ret <- ROC(xiv.ensemble.df[,length.dfs[i]], type = c("discrete"))
# VXV / VXMT Ratio
df.boot$vxv.vxmt.ratio <- vxv.ensemble.df[,length.dfs[i]]/ vxmt.ensemble.df[,length.dfs[i]]
df.boot$vxv.vxmt.ratio[is.na(df.boot$vxv.vxmt.ratio)] <- 0
df.boot$vxv.vxmt.ratio[is.nan(df.boot$vxv.vxmt.ratio)] <- 0
df.boot$vxv.vxmt.ratio[is.infinite(df.boot$vxv.vxmt.ratio)] <- 0
# Create sma
df.boot$sma <- SMA(df.boot[,"vxv.vxmt.ratio"], sma[i]) # Calls TTR package to create SMA
##############################################
# Optimize Strategy Params
##############################################
# Enter buy / sell rules
sma.n <- sma[i]
#df.boot$vxx.signal <- ifelse(df.boot$vxv.vxmt.ratio > 1 & df.boot$vxv.vxmt.ratio > df.boot[,paste0("ratio.sma.n", sma.n)], 1,0)
df.boot$vxx.signal <- ifelse(df.boot$vxv.vxmt.ratio > 1 & df.boot$vxv.vxmt.ratio > df.boot$sma, 1,0)
df.boot$xiv.signal <- ifelse(df.boot$vxv.vxmt.ratio < 1 & df.boot$vxv.vxmt.ratio < df.boot$sma, 1,0)
# lag signal by two forward days
# CBOE data is available next day
df.boot$vxx.signal <- lag(df.boot$vxx.signal,2) # Note k=1 implies a move *forward*
df.boot$xiv.signal <- lag(df.boot$xiv.signal,2) # Note k=1 implies a move *forward*
# Calculate equity curves
df.boot$vxx.signal.ret <- df.boot$vxx.signal * df.boot$vxx.close.ret
df.boot$xiv.signal.ret <- df.boot$xiv.signal * df.boot$xiv.close.ret
# Combine signals
df.boot$total.signal.ret <- df.boot$vxx.signal.ret + df.boot$xiv.signal.ret
# Pull select columns from data frame to make XTS whilst retaining formats
xts1 = xts(df.boot$vxx.signal.ret, order.by=as.Date(df.boot$Date, format="%m/%d/%Y"))
xts2 = xts(df.boot$xiv.signal.ret, order.by=as.Date(df.boot$Date, format="%m/%d/%Y"))
xts3 = xts(df.boot$total.signal.ret, order.by=as.Date(df.boot$Date, format="%m/%d/%Y"))
tail(xts3)
# Join XTS together
compare <- cbind(xts1,xts2,xts3)
# Use the PerformanceAnalytics package for trade statistics
require(PerformanceAnalytics)
colnames(compare) <- c("vxx","xiv","combined")
#charts.PerformanceSummary(compare,main="Long when current month is higher than previous 12 month", wealth.index=TRUE, colorset=rainbow12equal)
# performance.table <- rbind(table.AnnualizedReturns(compare),maxDrawdown(compare), CalmarRatio(compare),table.DownsideRisk(compare))
# drawdown.table <- rbind(table.Drawdowns(xts3))
#dev.off()
# logRets <- log(cumprod(1+compare))
# chart.TimeSeries(logRets, legend.loc='topleft', colorset=rainbow12equal,main="Log Returns")
#print(performance.table)
#print(drawdown.table)
cum.ret <- Return.cumulative(xts3, geometric = TRUE)
annualized <- Return.annualized(xts3, scale = NA, geometric = TRUE)
dd <- maxDrawdown(xts3)
sharpe <- SharpeRatio.annualized(xts3, Rf = 0, scale = NA, geometric = TRUE)
id <- paste0("col",length.dfs[i],"sma",sma[i])
# Create data output of rep and close.diff columns rbind
out <- data.frame("Annualized Return" = annualized,"Annualized Sharpe" = sharpe,"Cumulative Return" = cum.ret,"Maximum Draw Down" = dd, id = id)
rownames(out) <- paste0("col",length.dfs[i],"sma",sma[i])
boot_output[[i]] <- rbind(out)
ptm0 <- proc.time()
Sys.sleep(0.1)
ptm1=proc.time() - ptm0
time=as.numeric(ptm1[3])
cat('\n','Iteration',i,'took', time, "seconds to complete")
}, error = function(e) { print(paste("i =", i, "failed:")) })
}
# Join boot output
master <- do.call(rbind, boot_output)
names(master)
# Find confidence intervals
annualized.ret.mean <- mean(master$Annualized.Return)
annualized.ret.sdev <- sd(master$Annualized.Return)
annualized.ret.sample.size <- nrow(master)
annualized.error <- qnorm(0.975)* annualized.ret.sdev/sqrt( annualized.ret.sample.size)
annualized.left <- annualized.ret.mean - annualized.error
annualized.right <- annualized.ret.mean + annualized.error
#annualized.SE <- annualized.ret.sdev / sqrt(annualized.ret.sample.size)
#t.test(master$Annualized.Sharpe,conf.level = 0.98)
annualized.sharpe.mean <- mean(master$Annualized.Sharpe)
annualized.sharpe.sdev <- sd(master$Annualized.Sharpe)
annualized.sharpe.sample.size <- nrow(master)
annualized.sharpe.error <- qnorm(0.975)* annualized.sharpe.sdev/sqrt(annualized.sharpe.sample.size)
annualized.sharpe.left <- annualized.sharpe.mean - annualized.error
annualized.sharpe.right <- annualized.sharpe.mean + annualized.sharpe.error
Maximum.Draw.Down.mean <- mean(master$Maximum.Draw.Down)
Maximum.Draw.Down.sdev <- sd(master$Maximum.Draw.Down)
Maximum.Draw.Down.sample.size <- nrow(master)
Maximum.Draw.Down.error <- qnorm(0.975)* Maximum.Draw.Down.sdev/sqrt( Maximum.Draw.Down.sample.size)
Maximum.Draw.Down.left <- Maximum.Draw.Down.mean - annualized.error
Maximum.Draw.Down.right <- Maximum.Draw.Down.mean + Maximum.Draw.Down.error
#t.test(master$Annualized.Return)
# jarque.bera.test(master$Maximum.Draw.Down)
require(tseries)
# Plot
# Annualized Return
library(ggplot2)
p1 <- ggplot(data=master, aes(Annualized.Return,col=I("red")))+
geom_histogram(binwidth = 0.02)+
theme_classic()+
ggtitle("Resampled Strategy Results - Sma 51 to 70 - Annualized Return",subtitle="Strategy run over 100 resampled time series")+
labs(x="Annualized Return",y="Count")+
theme(plot.title = element_text(hjust=0.5),plot.subtitle =element_text(hjust=0.5))+
# geom_vline(xintercept = left, color="blue", linetype="dashed")+
#geom_vline(xintercept = right, color="blue", linetype="dashed")+
geom_vline(xintercept = annualized.ret.mean, color="blue", linetype="dashed")+
annotate("text", label = "Mean = 0.425727", x = 0.35, y = 117, color = "blue")
# Sharpe Ratio
p3 <- ggplot(data=master, aes(Annualized.Sharpe,col=I("red")))+
geom_histogram(binwidth = 0.001)+
theme_classic()+
ggtitle("Resampled Strategy Results - Sma 51 to 70 - Annualized Sharpe Ratio",subtitle="Strategy run over 100 resampled time series")+
labs(x="Annualized.Sharpe",y="Count")+
theme(plot.title = element_text(hjust=0.5),plot.subtitle =element_text(hjust=0.5))+
geom_vline(xintercept = annualized.sharpe.mean, color="blue", linetype="dashed")+
geom_vline(xintercept = annualized.sharpe.right, color="blue", linetype="dashed")+
geom_vline(xintercept = annualized.sharpe.left, color="blue", linetype="dashed")+
annotate("text", label = "Mean = 1.02887", x = 1.02887, y = 15, color = "blue")
annualized.sharpe.right
# Maximum DD
# Sharpe Ratio
p5 <- ggplot(data=master, aes(Maximum.Draw.Down,col=I("red")))+
geom_histogram(binwidth = 0.01)+
theme_classic()+
ggtitle("Resampled Strategy Results - Sma 51 to 70 - Maximum Draw Down",subtitle="Strategy run over 100 resampled time series")+
labs(x="Maximum.Draw.Down",y="Count")+
theme(plot.title = element_text(hjust=0.5),plot.subtitle =element_text(hjust=0.5))+
theme(plot.title = element_text(hjust=0.5),plot.subtitle =element_text(hjust=0.5))+
geom_vline(xintercept = Maximum.Draw.Down.mean, color="blue", linetype="dashed")+
annotate("text", label = "Mean = 0.5020338", x = 0.6, y = 65, color = "blue")
###################
# Plot Original back test results
##################
# Plot
# Annualized Return
library(ggplot2)
# find original mean annualized
mean.orig.annaulized <- mean(show$Annualized.Return)
p2 <- ggplot(data=show, aes(Annualized.Return,col=I("red")))+
geom_histogram(binwidth = 0.01)+
theme_classic()+
ggtitle("Original Strategy Results - Sma 51 to 70 - Annualized Return",subtitle="")+
labs(x="Annualized Return",y="Count")+
theme(plot.title = element_text(hjust=0.5),plot.subtitle =element_text(hjust=0.5))+
# geom_vline(xintercept = left, color="blue", linetype="dashed")+
#geom_vline(xintercept = right, color="blue", linetype="dashed")+
geom_vline(xintercept = mean.orig.annaulized, color="blue", linetype="dashed")+
annotate("text", label = "Mean = 0.6039258", x = 0.585, y = 15, color = "blue")
require(gridExtra)
gridExtra::grid.arrange(p1, p2, nrow = 1)
# Sharpe Ratio
# find original mean annualized
mean.orig.sharpe <- mean(show$Annualized.Sharpe)
p4 <- ggplot(data=show, aes(Annualized.Sharpe,col=I("red")))+
geom_histogram(binwidth = 0.02)+
theme_classic()+
ggtitle("Original Strategy Results - Sma 51 to 70 - Annualized Sharpe Ratio",subtitle="")+
labs(x="Annualized.Sharpe",y="Count")+
theme(plot.title = element_text(hjust=0.5),plot.subtitle =element_text(hjust=0.5))+
geom_vline(xintercept = mean.orig.sharpe, color="blue", linetype="dashed")+
annotate("text", label = "Mean = 1.565738", x = 1.52, y = 6.5, color = "blue")
gridExtra::grid.arrange(p3, p4, nrow = 1)
# Maximum DD
# Sharpe Ratio
names(show)
show$Maximum.Draw.Down
mean.orig.maxdd <- mean(show$Maximum.Draw.Down)
p6 <- ggplot(data=show, aes(Maximum.Draw.Down,col=I("red")))+
geom_histogram(binwidth = 0.0001)+
theme_classic()+
ggtitle("Original Strategy Results - Sma 51 to 70 - Maximum Draw Down",subtitle="")+
labs(x="Maximum.Draw.Down",y="Count")+
theme(plot.title = element_text(hjust=0.5),plot.subtitle =element_text(hjust=0.5))+
theme(plot.title = element_text(hjust=0.5),plot.subtitle =element_text(hjust=0.5))+
geom_vline(xintercept = mean.orig.maxdd, color="blue", linetype="dashed")+
annotate("text", label = "Mean = 0.3420499", x = 0.35, y = 7, color = "blue")
gridExtra::grid.arrange(p5, p6, nrow = 1)