-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkernel_computations.py
185 lines (171 loc) · 4.84 KB
/
kernel_computations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import math
import torch
import torch.nn.functional as F
from cauchy_mult import vand_log_mult_sym_bwd, vand_log_mult_sym_fwd
from einops import rearrange
from fftconv import fftconv_bwd, fftconv_fwd
class LogVandMultiplySymmetric(torch.autograd.Function):
@staticmethod
def forward(ctx, v, x, L):
batch, N = v.shape
supported_N_values = [1 << log_n for log_n in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]
if not N in supported_N_values:
raise NotImplementedError(f"Only support N values in {supported_N_values}")
max_L_value = 32 * 1024 * 64 * 1024
if L > max_L_value:
raise NotImplementedError(f"Only support L values <= {max_L_value}")
if not v.is_cuda and x.is_cuda:
raise NotImplementedError(f"Only support CUDA tensors")
ctx.save_for_backward(v, x)
return vand_log_mult_sym_fwd(v, x, L)
@staticmethod
def backward(ctx, dout):
v, x = ctx.saved_tensors
dv, dx = vand_log_mult_sym_bwd(v, x, dout)
return dv, dx, None
if (vand_log_mult_sym_fwd and vand_log_mult_sym_bwd) is not None:
log_vandermonde_fast = LogVandMultiplySymmetric.apply
else:
log_vandermonde_fast = None
def make_bidirectional(ssm_kernel, L):
k_direct, k_reversed = torch.tensor_split(ssm_kernel, 2, dim=0)
return (
F.pad(k_direct.contiguous(), (0, L)).contiguous()
+ torch.roll(
F.pad(k_reversed.flip(-1).contiguous(), (L, 0)), 1, dims=-1
).contiguous()
).squeeze(0)
class FFTConvFunc(torch.autograd.Function):
@staticmethod
def forward(
ctx,
u,
k,
D,
dropout_mask=None,
gelu=True,
force_fp16_output=False,
output_hbl_layout=False,
v=None,
head_dim=1,
q=None,
fftfp16=False,
k_rev=None,
):
seqlen = u.shape[-1]
fft_size = max(2 * 2 ** int(math.ceil(math.log2(seqlen))), 16)
k_f = torch.fft.rfft(k, n=fft_size)
if k_rev is not None:
k_f = k_f + torch.fft.rfft(k_rev, n=fft_size).conj()
if u.stride(-1) != 1:
u = u.contiguous()
k_f = k_f.contiguous()
D = D.contiguous()
if v is not None and v.stride(-1) != 1:
v = v.contiguous()
if q is not None and q.stride(-1) != 1:
q = q.contiguous()
if dropout_mask is not None:
dropout_mask = dropout_mask.contiguous()
ctx.save_for_backward(u, k_f, D, dropout_mask, v, q)
ctx.output_hbl_layout = output_hbl_layout
ctx.head_dim = head_dim
ctx.gelu = gelu
ctx.fftfp16 = fftfp16
ctx.has_k_rev = k_rev is not None
ctx.klen = k.shape[-1]
out = fftconv_fwd(
u,
k_f,
D,
v,
head_dim,
q,
dropout_mask,
gelu,
False,
False,
fft_size,
force_fp16_output,
output_hbl_layout,
fftfp16,
)
return out
@staticmethod
def backward(ctx, dout):
if ctx.output_hbl_layout:
dout = rearrange(
rearrange(dout, "b h l -> h b l").contiguous(), "h b l -> b h l"
)
else:
dout = dout.contiguous()
u, k_f, D, dropout_mask, v, q = ctx.saved_tensors
seqlen = u.shape[-1]
fft_size = max(2 * 2 ** int(math.ceil(math.log2(seqlen))), 16)
du, dk_f, dD, dv, dq = fftconv_bwd(
dout,
u,
k_f,
D,
v,
ctx.head_dim,
q,
dropout_mask,
ctx.gelu,
False,
False,
fft_size,
ctx.output_hbl_layout,
ctx.fftfp16,
)
klen = ctx.klen
dk = torch.fft.irfft(dk_f, n=fft_size, norm="forward")[..., :klen]
dk_rev = (
None
if not ctx.has_k_rev
else torch.fft.irfft(dk_f.conj(), n=fft_size, norm="forward")[..., :seqlen]
)
if v is not None:
dv = dv.to(
dtype=v.dtype
) # We do atomicAdd in fp32 so might need to convert to fp16
return (
du,
dk,
dD,
None,
None,
None,
None,
dv if v is not None else None,
None,
dq if q is not None else None,
None,
dk_rev,
)
def fftconv_func(
u,
kernel,
v,
q,
D,
gelu=True,
force_fp16_output=False,
output_hbl_layout=False,
num_heads=1,
fftfp16=False,
):
return FFTConvFunc.apply(
u,
kernel,
D,
None,
gelu,
force_fp16_output,
output_hbl_layout,
v,
num_heads,
q,
fftfp16,
None,
)