-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess_data.py
76 lines (66 loc) · 2.43 KB
/
preprocess_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import argparse
import os
from datasets import load_dataset
from dotenv import load_dotenv
from transformers import AutoTokenizer
load_dotenv()
DATA_PATH = os.environ["DATA_PATH"]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_name", help="Dataset name")
parser.add_argument("--dataset_subset", help="Dataset subset")
parser.add_argument("--data_column", help="Data column")
parser.add_argument("--text_column", help="Text column")
parser.add_argument("--max_source_length", type=int, help="Max source length")
parser.add_argument("--max_target_length", type=int, help="Max target length")
parser.add_argument(
"--preprocessing_num_workers",
type=int,
default=30,
help="Preprocessing num workers",
)
parser.add_argument(
"--batch_size",
type=int,
default=1000,
help="Preprocessing batch size",
)
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base")
kwargs = {}
if args.dataset_subset is not None:
kwargs["name"] = args.dataset_subset
dataset = load_dataset(args.dataset_name, **kwargs)
data_column, text_column = args.data_column, args.text_column
def preprocess_function(examples):
inputs = examples[data_column]
targets = examples[text_column]
model_inputs = tokenizer(
inputs,
max_length=args.max_source_length,
truncation=True,
)
if None in targets:
return model_inputs
else:
labels = tokenizer(
text_target=targets,
max_length=args.max_target_length,
truncation=True,
)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
column_names = dataset["train"].column_names
dataset = dataset.map(
preprocess_function,
batched=True,
batch_size=args.batch_size,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
desc="Running tokenizer on dataset",
)
if args.dataset_subset is not None:
path = f"{DATA_PATH}{args.dataset_subset.split('/')[-1]}_{args.max_source_length}_{args.max_target_length}/"
else:
path = f"{DATA_PATH}{args.dataset_name.split('/')[-1]}_{args.max_source_length}_{args.max_target_length}/"
dataset.save_to_disk(path)