forked from pressel/pycles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMomentumAdvection.pyx
130 lines (108 loc) · 5.26 KB
/
MomentumAdvection.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
cimport Grid
cimport PrognosticVariables
cimport ParallelMPI
cimport ReferenceState
from NetCDFIO cimport NetCDFIO_Stats
import numpy as np
cimport numpy as np
cdef extern from "momentum_advection.h":
void compute_advective_tendencies_m(Grid.DimStruct *dims, double *rho0, double *rho0_half,
double *alpha0, double *alpha0_half, double *vel_advected,
double *vel_advecting, double *tendency, Py_ssize_t d_advected,
Py_ssize_t d_advecting, Py_ssize_t scheme) nogil
cdef class MomentumAdvection:
def __init__(self, namelist, ParallelMPI.ParallelMPI Pa):
try:
self.order = namelist['momentum_transport']['order']
except:
Pa.root_print(
'momentum_transport order not given in namelist')
Pa.root_print('Killing simulation now!')
Pa.kill()
return
cpdef initialize(self, Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
#for i in xrange(Gr.dims.dims):
# NS.add_profile(PV.velocity_names_directional[i] + '_flux_z',Gr,Pa)
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState Rs, PrognosticVariables.PrognosticVariables PV, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t i_advecting # Direction of advecting velocity
Py_ssize_t i_advected # Direction of momentum component
# Shift to beginning of momentum (velocity) component in the
# PV.values array
Py_ssize_t shift_advected
# Shift to beginning of advecting velocity componentin the
# PV.values array
Py_ssize_t shift_advecting
for i_advected in xrange(Gr.dims.dims):
# Compute the shift to the starting location of the advected
# velocity in the PV values array
shift_advected = PV.velocity_directions[i_advected] * Gr.dims.npg
for i_advecting in xrange(Gr.dims.dims):
# Compute the shift to the starting location of the advecting
# velocity in the PV values array
shift_advecting = PV.velocity_directions[
i_advecting] * Gr.dims.npg
# Compute the fluxes
compute_advective_tendencies_m(&Gr.dims, &Rs.rho0[0], &Rs.rho0_half[0], &Rs.alpha0[0], &Rs.alpha0_half[0],
&PV.values[shift_advected], &PV.values[shift_advecting],
&PV.tendencies[shift_advected], i_advected, i_advecting, self.order)
return
cpdef stats_io(self, Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
# cdef:
# Py_ssize_t i_advected, i_advecting = 2, shift_flux, k
# double[:] tmp
# double [:] tmp_interp = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
#
#
# for i_advected in xrange(Gr.dims.dims):
# shift_flux = i_advected * Gr.dims.dims* Gr.dims.npg + i_advecting * Gr.dims.npg
# tmp = Pa.HorizontalMean(Gr, &self.flux[shift_flux])
# if i_advected < 2:
# for k in xrange(Gr.dims.gw,Gr.dims.nlg[2]-Gr.dims.gw):
# tmp_interp[k] = 0.5*(tmp[k-1]+tmp[k])
# else:
# tmp_interp[:] = tmp[:]
# NS.write_profile(PV.velocity_names_directional[i_advected] + '_flux_z', tmp_interp[Gr.dims.gw:-Gr.dims.gw], Pa)
return
cpdef double [:, :, :] get_flux(self, Py_ssize_t i_advected, Py_ssize_t i_advecting, Grid.Grid Gr):
'''
Returns momentum flux tensor component.
:param i_advected: direction of advection velocity
:param i_advecting: direction of advecting velocity
:param Gr: Grid class
:return: memory view type double rank-3
'''
cdef:
Py_ssize_t shift_flux = i_advected * Gr.dims.dims * Gr.dims.npg + i_advecting * Gr.dims.npg
Py_ssize_t i, j, k, ijk, ishift, jshift
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t imin = 0
Py_ssize_t jmin = 0
Py_ssize_t kmin = 0
Py_ssize_t imax = Gr.dims.nlg[0]
Py_ssize_t jmax = Gr.dims.nlg[1]
Py_ssize_t kmax = Gr.dims.nlg[2]
cdef double[:, :, :] return_flux = np.empty((Gr.dims.nlg[0], Gr.dims.nlg[1], Gr.dims.nlg[2]), dtype=np.double, order='c')
cdef double[:] flux = self.flux
with nogil:
for i in xrange(imin, imax):
ishift = i * istride
for j in xrange(jmin, jmax):
jshift = j * jstride
for k in xrange(kmin, kmax):
return_flux[
i,
j,
k] = flux[
shift_flux +
ishift +
jshift +
k]
return return_flux