forked from pressel/pycles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParallelMPI.pyx
1068 lines (866 loc) · 41.1 KB
/
ParallelMPI.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
cimport mpi4py.libmpi as mpi
cimport Grid
from time import time
import sys
import numpy as np
cimport numpy as np
import cython
from libc.math cimport fmin, fmax
cdef class ParallelMPI:
def __init__(self,namelist):
'''
Initializes the ParallelMPI class. Calls MPI init. Sets-up MPI cartesian topologies and sub-topologies.
:param namelist: Namelist dictionary.
:return:
'''
cdef:
int is_initialized
int ierr = 0
#Check to see if MPI_Init has been called if not do so
ierr = mpi.MPI_Initialized(&is_initialized)
if not is_initialized:
from mpi4py import MPI
self.comm_world = mpi.MPI_COMM_WORLD
ierr = mpi.MPI_Comm_rank(mpi.MPI_COMM_WORLD, &self.rank)
ierr = mpi.MPI_Comm_size(mpi.MPI_COMM_WORLD, &self.size)
cdef:
int [3] cart_dims
int [3] cyclic
int ndims = 3
int reorder = 1
cart_dims[0] = namelist['mpi']['nprocx']
cart_dims[1] = namelist['mpi']['nprocy']
cart_dims[2] = namelist['mpi']['nprocz']
#Check to make sure that cart dimensions are consistent with MPI global size
if cart_dims[0] * cart_dims[1] * cart_dims[2] != self.size:
self.root_print('MPI global size: ' + str(self.size) +
'does not equal nprocx * nprocy * nprocz: '
+ str(cart_dims[0] * cart_dims[1] * cart_dims[2]))
self.root_print('Killing simulation NOW!')
self.kill()
cyclic[0] = 1
cyclic[1] = 1
cyclic[2] = 0
#Create the cartesian world commmunicator
ierr = mpi.MPI_Cart_create(self.comm_world,ndims, cart_dims, cyclic, reorder,&self.cart_comm_world)
self.barrier()
#Create the cartesian sub-communicators
self.create_sub_communicators()
self.barrier()
return
cpdef root_print(self,txt_output):
'''
Print only from the root process.
:param txt_output: Output
:return:
'''
if self.rank==0:
print(txt_output)
return
cpdef kill(self):
'''
Call MPI_Abort.
:return:
'''
cdef int ierr = 0
self.root_print("Terminating MPI!")
ierr = mpi.MPI_Abort(self.comm_world,1)
sys.exit()
return
cdef void barrier(self):
'''
Call MPI_Barrier on global MPI communicator.
:return:
'''
mpi.MPI_Barrier(self.comm_world)
return
cdef void create_sub_communicators(self):
'''
:return: Sets up cartesian sub topologies from cart_comm_world.
'''
cdef:
int ierr = 0
int [3] remains
#Create the sub-communicator where x-dimension remains
remains[0] = 1
remains[1] = 0
remains[2] = 0
ierr = mpi.MPI_Cart_sub(self.cart_comm_world,remains, &self.cart_comm_sub_x)
ierr = mpi.MPI_Comm_size(self.cart_comm_sub_x, &self.sub_x_size)
ierr = mpi.MPI_Comm_rank(self.cart_comm_sub_x, &self.sub_x_rank)
#Create the sub-communicator where the y-dimension remains
remains[0] = 0
remains[1] = 1
remains[2] = 0
ierr = mpi.MPI_Cart_sub(self.cart_comm_world,remains, &self.cart_comm_sub_y)
ierr = mpi.MPI_Comm_size(self.cart_comm_sub_y, &self.sub_y_size)
ierr = mpi.MPI_Comm_rank(self.cart_comm_sub_y, &self.sub_y_rank)
#Create the sub communicator where the z-dimension remains
remains[0] = 0
remains[1] = 0
remains[2] = 1
ierr = mpi.MPI_Cart_sub(self.cart_comm_world,remains, &self.cart_comm_sub_z)
ierr = mpi.MPI_Comm_size(self.cart_comm_sub_z, &self.sub_z_size)
ierr = mpi.MPI_Comm_rank(self.cart_comm_sub_z, &self.sub_z_rank)
#Create the sub communicator where x and y-dimension still remains
remains[0] = 1
remains[1] = 1
remains[2] = 0
ierr = mpi.MPI_Cart_sub(self.cart_comm_world,remains, &self.cart_comm_sub_xy)
return
cdef double domain_scalar_sum(self, double local_value):
'''
Compute the sum over all mpi ranks of a single scalar of type double.
:param local_value: the value to be summed over the ranks
:return: sum of local values on all processes
'''
cdef:
double global_sum
mpi.MPI_Allreduce(&local_value, &global_sum,1,mpi.MPI_DOUBLE,mpi.MPI_SUM,self.comm_world)
return global_sum
cdef double domain_scalar_max(self, double local_value):
'''
Compute the maximum over all mpi ranks of a single scalar of type double.
:param local_value: the value to be maxed over the ranks
:return: maximum of local values on all processes
'''
cdef:
double global_max
mpi.MPI_Allreduce(&local_value, &global_max,1,mpi.MPI_DOUBLE,mpi.MPI_MAX,self.comm_world)
return global_max
cdef double domain_scalar_min(self, double local_value):
'''
Compute the minimum over all mpi ranks of a single scalar of type double.
:param local_value: the value to be min-ed over the ranks
:return: sum of local values on all processes
'''
cdef:
double global_min
mpi.MPI_Allreduce(&local_value, &global_min,1,mpi.MPI_DOUBLE,mpi.MPI_MIN,self.comm_world)
return global_min
cdef double [:] domain_vector_sum(self, double [:] local_vector, Py_ssize_t n):
'''
Compute the sum over all mpi ranks of a vector of type double.
:param local_vector: the value to be summed over the ranks
:return: sum of local vectors on all processes
'''
cdef:
double [:] global_sum = np.empty((n,),dtype=np.double,order='c')
mpi.MPI_Allreduce(&local_vector[0], &global_sum[0],n,mpi.MPI_DOUBLE,mpi.MPI_SUM,self.comm_world)
return global_sum
cdef double [:] HorizontalMean(self, Grid.Grid Gr, double *values):
'''
Compute the horizontal mean of the array pointed to by values.
values should have dimension of Gr.dims.nlg[0] * Gr.dims.nlg[1]
* Gr.dims.nlg[1].
:param Gr: Grid class
:param values1: pointer to array of type double containing first value in product
:return: memoryview type double with dimension Gr.dims.nlg[2]
'''
cdef:
double [:] mean_local = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
double [:] mean = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
int i,j,k,ijk
int imin = Gr.dims.gw
int jmin = Gr.dims.gw
int kmin = 0
int imax = Gr.dims.nlg[0] - Gr.dims.gw
int jmax = Gr.dims.nlg[1] - Gr.dims.gw
int kmax = Gr.dims.nlg[2]
int istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
int jstride = Gr.dims.nlg[2]
int ishift, jshift
double n_horizontal_i = 1.0/np.double(Gr.dims.n[1]*Gr.dims.n[0])
with nogil:
for i in xrange(imin,imax):
ishift = i * istride
for j in xrange(jmin,jmax):
jshift = j * jstride
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
mean_local[k] += values[ijk]
#Here we call MPI_Allreduce on the sub_xy communicator as we only need communication among
#processes with the the same vertical rank
mpi.MPI_Allreduce(&mean_local[0],&mean[0],Gr.dims.nlg[2],
mpi.MPI_DOUBLE,mpi.MPI_SUM,self.cart_comm_sub_xy)
for i in xrange(Gr.dims.nlg[2]):
mean[i] = mean[i]*n_horizontal_i
return mean
cdef double [:] HorizontalMeanofSquares(self, Grid.Grid Gr, const double *values1, const double *values2):
'''
Compute the horizontal mean of the product of two variables (values1 and values2). values1 and values2 are
passed in as pointers of type double. These should have dimension of Gr.dims.nlg[0] * Gr.dims.nlg[1]
* Gr.dims.nlg[1].
:param Gr: Grid class
:param values1: pointer to array of type double containing first value in product
:param values2: pointer to array of type double containing second value in product
:return: memoryview type double with dimension Gr.dims.nlg[2]
'''
cdef:
double [:] mean_local = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
double [:] mean = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
int i,j,k,ijk
int imin = Gr.dims.gw
int jmin = Gr.dims.gw
int kmin = 0
int imax = Gr.dims.nlg[0] - Gr.dims.gw
int jmax = Gr.dims.nlg[1] - Gr.dims.gw
int kmax = Gr.dims.nlg[2]
int istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
int jstride = Gr.dims.nlg[2]
int ishift, jshift
double n_horizontal_i = 1.0/np.double(Gr.dims.n[1]*Gr.dims.n[0])
with nogil:
for i in xrange(imin,imax):
ishift = i * istride
for j in xrange(jmin,jmax):
jshift = j * jstride
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
mean_local[k] += values1[ijk]*values2[ijk]
#Here we call MPI_Allreduce on the sub_xy communicator as we only need communication among
#processes with the the same vertical rank
mpi.MPI_Allreduce(&mean_local[0],&mean[0],Gr.dims.nlg[2],
mpi.MPI_DOUBLE,mpi.MPI_SUM,self.cart_comm_sub_xy)
for i in xrange(Gr.dims.nlg[2]):
mean[i] = mean[i]*n_horizontal_i
return mean
cdef double [:] HorizontalMeanofCubes(self,Grid.Grid Gr,const double *values1,const double *values2, const double *values3):
cdef:
double [:] mean_local = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
double [:] mean = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
int i,j,k,ijk
int imin = Gr.dims.gw
int jmin = Gr.dims.gw
int kmin = 0
int imax = Gr.dims.nlg[0] - Gr.dims.gw
int jmax = Gr.dims.nlg[1] - Gr.dims.gw
int kmax = Gr.dims.nlg[2]
int istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
int jstride = Gr.dims.nlg[2]
int ishift, jshift
double n_horizontal_i = 1.0/np.double(Gr.dims.n[1]*Gr.dims.n[0])
with nogil:
for i in xrange(imin,imax):
ishift = i * istride
for j in xrange(jmin,jmax):
jshift = j * jstride
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
mean_local[k] += values1[ijk]*values2[ijk]*values3[ijk]
#Here we call MPI_Allreduce on the sub_xy communicator as we only need communication among
#processes with the the same vertical rank
mpi.MPI_Allreduce(&mean_local[0],&mean[0],Gr.dims.nlg[2],
mpi.MPI_DOUBLE,mpi.MPI_SUM,self.cart_comm_sub_xy)
for i in xrange(Gr.dims.nlg[2]):
mean[i] = mean[i]*n_horizontal_i
return mean
cdef double [:] HorizontalMaximum(self, Grid.Grid Gr, double *values):
cdef:
double [:] max_local = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
double [:] max = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
int i,j,k,ijk
int imin = Gr.dims.gw
int jmin = Gr.dims.gw
int kmin = 0
int imax = Gr.dims.nlg[0] - Gr.dims.gw
int jmax = Gr.dims.nlg[1] - Gr.dims.gw
int kmax = Gr.dims.nlg[2]
int istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
int jstride = Gr.dims.nlg[2]
int ishift, jshift
double n_horizontal_i = 1.0/np.double(Gr.dims.n[1]*Gr.dims.n[0])
with nogil:
for k in xrange(kmin,kmax):
max_local[k] = -9e12
for i in xrange(imin,imax):
ishift = i * istride
for j in xrange(jmin,jmax):
jshift = j * jstride
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
max_local[k] = fmax(max_local[k],values[ijk])
mpi.MPI_Allreduce(&max_local[0],&max[0],Gr.dims.nlg[2],
mpi.MPI_DOUBLE,mpi.MPI_MAX,self.cart_comm_sub_xy)
return max
cdef double [:] HorizontalMinimum(self, Grid.Grid Gr, double *values):
cdef:
double [:] min_local = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
double [:] min = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
int i,j,k,ijk
int imin = Gr.dims.gw
int jmin = Gr.dims.gw
int kmin = 0
int imax = Gr.dims.nlg[0] - Gr.dims.gw
int jmax = Gr.dims.nlg[1] - Gr.dims.gw
int kmax = Gr.dims.nlg[2]
int istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
int jstride = Gr.dims.nlg[2]
int ishift, jshift
double n_horizontal_i = 1.0/np.double(Gr.dims.n[1]*Gr.dims.n[0])
with nogil:
for k in xrange(kmin,kmax):
min_local[k] = 9e12
for i in xrange(imin,imax):
ishift = i * istride
for j in xrange(jmin,jmax):
jshift = j * jstride
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
min_local[k] = fmin(min_local[k],values[ijk])
mpi.MPI_Allreduce(&min_local[0],&min[0],Gr.dims.nlg[2],
mpi.MPI_DOUBLE,mpi.MPI_MIN,self.cart_comm_sub_xy)
return min
cdef double HorizontalMeanSurface(self,Grid.Grid Gr,double *values):
# Some assumptions for using this function:
#--the <values> array is defined for all processors
#--<values> = 0 on all processors for which zrank !=0
# this is necessary to ensure that the root processor has the correct mean
cdef:
double mean_local = 0.0
double mean = 0.0
int i,j,ij
int imin = Gr.dims.gw
int jmin = Gr.dims.gw
int imax = Gr.dims.nlg[0] - Gr.dims.gw
int jmax = Gr.dims.nlg[1] - Gr.dims.gw
int gw = Gr.dims.gw
int istride_2d = Gr.dims.nlg[1]
int ishift, jshift
double n_horizontal_i = 1.0/np.double(Gr.dims.n[1]*Gr.dims.n[0])
with nogil:
for i in xrange(imin,imax):
ishift = i * istride_2d
for j in xrange(jmin,jmax):
ij = ishift + j
mean_local += values[ij]
mpi.MPI_Allreduce(&mean_local,&mean,1,
mpi.MPI_DOUBLE,mpi.MPI_SUM,self.comm_world)
mean = mean*n_horizontal_i
return mean
cdef double [:] HorizontalMeanConditional(self,Grid.Grid Gr,double *values, double *mask):
'''
This function computes horizontal means given a binary conditional. For example, it can be used to compute
mean profiles within cloudy air. The mask must be pre-computed.
:param Gr: Grid class
:param values: variable array to be averaged. Contains ghost points
:param mask: array of 1's (condition=true) and 0's (condition = false). Contains ghost points, but mask values
of ghost points do not have to be correct (they are not used in this routine).
:return: vertical profile of the conditional average of array values
'''
cdef:
double [:] mean_local = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
double [:] mean = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
double [:] sum_local = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
double [:] sum = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
int i,j,k,ijk
int imin = Gr.dims.gw
int jmin = Gr.dims.gw
int kmin = 0
int imax = Gr.dims.nlg[0] - Gr.dims.gw
int jmax = Gr.dims.nlg[1] - Gr.dims.gw
int kmax = Gr.dims.nlg[2]
int istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
int jstride = Gr.dims.nlg[2]
int ishift, jshift
with nogil:
for i in xrange(imin,imax):
ishift = i * istride
for j in xrange(jmin,jmax):
jshift = j * jstride
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
mean_local[k] += values[ijk]*mask[ijk]
sum_local[k] += mask[ijk]
#Here we call MPI_Allreduce on the sub_xy communicator as we only need communication among
#processes with the the same vertical rank
mpi.MPI_Allreduce(&mean_local[0],&mean[0],Gr.dims.nlg[2],
mpi.MPI_DOUBLE,mpi.MPI_SUM,self.cart_comm_sub_xy)
mpi.MPI_Allreduce(&sum_local[0],&sum[0],Gr.dims.nlg[2],
mpi.MPI_DOUBLE,mpi.MPI_SUM,self.cart_comm_sub_xy)
for i in xrange(Gr.dims.nlg[2]):
mean[i] = mean[i]/np.maximum(sum[i], 1.0)
return mean
cdef double [:] HorizontalMeanofSquaresConditional(self,Grid.Grid Gr,double *values1,double *values2, double *mask):
'''
This function computes horizontal means of the product of two array given a binary conditional.
For example, it can be used to compute mean-square profiles within cloudy air. The mask must be pre-computed.
:param Gr: Grid class
:param values1: 1st of the variable arrays to be multiplied. Contains ghost points
:param values2: 2nd of the variable arrays to be multiplied. Contains ghost points
:param mask: array of 1's (condition=true) and 0's (condition = false). Contains ghost points, but mask values
of ghost points do not have to be correct (they are not used in this routine).
:return: vertical profile of the conditional average of array values
'''
cdef:
double [:] mean_local = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
double [:] mean = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
double [:] sum_local = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
double [:] sum = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
int i,j,k,ijk
int imin = Gr.dims.gw
int jmin = Gr.dims.gw
int kmin = 0
int imax = Gr.dims.nlg[0] - Gr.dims.gw
int jmax = Gr.dims.nlg[1] - Gr.dims.gw
int kmax = Gr.dims.nlg[2]
int istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
int jstride = Gr.dims.nlg[2]
int ishift, jshift
with nogil:
for i in xrange(imin,imax):
ishift = i * istride
for j in xrange(jmin,jmax):
jshift = j * jstride
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
mean_local[k] += values1[ijk]*values2[ijk]*mask[ijk]
sum_local[k] += mask[ijk]
#Here we call MPI_Allreduce on the sub_xy communicator as we only need communication among
#processes with the the same vertical rank
mpi.MPI_Allreduce(&mean_local[0],&mean[0],Gr.dims.nlg[2],
mpi.MPI_DOUBLE,mpi.MPI_SUM,self.cart_comm_sub_xy)
mpi.MPI_Allreduce(&sum_local[0],&sum[0],Gr.dims.nlg[2],
mpi.MPI_DOUBLE,mpi.MPI_SUM,self.cart_comm_sub_xy)
for i in xrange(Gr.dims.nlg[2]):
mean[i] = mean[i]/np.maximum(sum[i], 1.0)
return mean
cdef class Pencil:
def __init__(self):
pass
cpdef initialize(self, Grid.Grid Gr, ParallelMPI Pa, int dim):
self.dim = dim
self.n_local_values = Gr.dims.npl
cdef:
int remainder = 0
int i
if dim==0:
self.size = Pa.sub_x_size
self.rank = Pa.sub_x_rank
self.n_total_pencils = Gr.dims.nl[1] * Gr.dims.nl[2]
self.pencil_length = Gr.dims.n[0]
elif dim==1:
self.size = Pa.sub_y_size
self.rank = Pa.sub_y_rank
self.n_total_pencils = Gr.dims.nl[0] * Gr.dims.nl[2]
self.pencil_length = Gr.dims.n[1]
elif dim==2:
self.size = Pa.sub_z_size
self.rank = Pa.sub_z_rank
self.n_total_pencils = Gr.dims.nl[0] * Gr.dims.nl[1]
self.pencil_length = Gr.dims.n[2]
else:
Pa.root_print('Pencil dim='+ str(dim) + 'not valid')
Pa.root_print('Killing simuulation')
Pa.kill()
remainder = self.n_total_pencils%self.size
self.n_pencil_map = np.empty((self.size,),dtype=np.int,order='c')
self.n_pencil_map[:] = self.n_total_pencils//self.size
for i in xrange(self.size):
if i < remainder:
self.n_pencil_map[i] += 1
self.n_local_pencils = self.n_pencil_map[self.rank] #Number of pencils locally
self.nl_map = np.empty((self.size),dtype=np.int,order='c') #Number of local grid points in pencild dir
self.send_counts = np.empty((self.size),dtype=np.intc,order='c') #Total number of points to send to each rank
self.recv_counts = np.empty((self.size),dtype=np.intc,order='c') #Total numer of points to recv from each rank
self.rdispls = np.zeros((self.size),dtype=np.intc,order='c') #Where to put received points
self.sdispls = np.zeros((self.size),dtype=np.intc,order='c') #Where to get sent points
#Now need to communicate number of local points on each process
if self.dim==0:
#Gather the number of points on in direction dim for each rank
mpi.MPI_Allgather(&Gr.dims.nl[0],1,mpi.MPI_LONG,&self.nl_map[0],1,mpi.MPI_LONG,Pa.cart_comm_sub_x)
#Now compute the send counts
for i in xrange(self.size):
self.send_counts[i] = Gr.dims.nl[0] * self.n_pencil_map[i]
self.recv_counts[i] = self.n_local_pencils * self.nl_map[i]
elif self.dim==1:
mpi.MPI_Allgather(&Gr.dims.nl[1],1,mpi.MPI_LONG,&self.nl_map[0],1,mpi.MPI_LONG,Pa.cart_comm_sub_y)
#Now compute the send counts
for i in xrange(self.size):
self.send_counts[i] = Gr.dims.nl[1] * self.n_pencil_map[i]
self.recv_counts[i] = self.n_local_pencils * self.nl_map[i]
else:
mpi.MPI_Allgather(&Gr.dims.nl[2],1,mpi.MPI_LONG,&self.nl_map[0],1,mpi.MPI_LONG,Pa.cart_comm_sub_z)
#Now compute the send counts
for i in xrange(self.size):
self.send_counts[i] = Gr.dims.nl[2] * self.n_pencil_map[i]
self.recv_counts[i] = self.n_local_pencils * self.nl_map[i]
#Compute the send and receive displacments
for i in xrange(self.size-1):
self.sdispls[i+1] = self.sdispls[i] + self.send_counts[i]
self.rdispls[i+1] = self.rdispls[i] + self.recv_counts[i]
Pa.barrier()
return
cdef double [:,:] forward_double(self, Grid.DimStruct *dims, ParallelMPI Pa ,double *data):
cdef:
double [:] local_transpose = np.empty((dims.npl,),dtype=np.double,order='c')
double [:] recv_buffer = np.empty((self.n_local_pencils * self.pencil_length),dtype=np.double,order='c')
double [:,:] pencils = np.empty((self.n_local_pencils,self.pencil_length),dtype=np.double,order='c')
#Build send buffer
self.build_buffer_double(dims, data, &local_transpose[0])
if(self.size > 1):
#Do all to all communication
if self.dim == 0:
mpi.MPI_Alltoallv(&local_transpose[0], &self.send_counts[0], &self.sdispls[0],mpi.MPI_DOUBLE,
&recv_buffer[0], &self.recv_counts[0], &self.rdispls[0],mpi.MPI_DOUBLE,Pa.cart_comm_sub_x)
elif self.dim==1:
mpi.MPI_Alltoallv(&local_transpose[0], &self.send_counts[0], &self.sdispls[0],mpi.MPI_DOUBLE,
&recv_buffer[0], &self.recv_counts[0], &self.rdispls[0],mpi.MPI_DOUBLE,Pa.cart_comm_sub_y)
else:
mpi.MPI_Alltoallv(&local_transpose[0], &self.send_counts[0], &self.sdispls[0],mpi.MPI_DOUBLE,
&recv_buffer[0], &self.recv_counts[0], &self.rdispls[0],mpi.MPI_DOUBLE,Pa.cart_comm_sub_z)
self.unpack_buffer_double(dims,&recv_buffer[0],pencils)
else:
self.unpack_buffer_double(dims,&local_transpose[0],pencils)
return pencils
cdef void build_buffer_double(self, Grid.DimStruct *dims, double *data, double *local_transpose ):
'''
A method to build a send buffer for Pencils of type double. The function has no return value but does
have side effects the memory pointed to by *local_transpose.
:param dims: pointer to dims structure
:param data: pointer to 1D array
:param local_transpose: pointer to the transposed data ready for Pencil communication.
:return:
'''
cdef:
long imin = dims.gw
long jmin = dims.gw
long kmin = dims.gw
long imax = dims.nlg[0] - dims.gw
long jmax = dims.nlg[1] - dims.gw
long kmax = dims.nlg[2] - dims.gw
long istride, jstride, kstride
long istride_nogw, jstride_nogw, kstride_nogw
long ishift, jshift, kshift
long ishift_nogw, jshift_nogw, kshift_nogw
long i,j,k,ijk,ijk_no_gw
'''
Determine the strides, first for the un-transposed data (including ghost points), and then for the transposed
data. In the case of the transposed data, the strides are such that the fastest changing 3D index is in
then self.dim direction.
'''
if self.dim == 0:
istride = dims.nlg[1] * dims.nlg[2]
jstride = dims.nlg[2]
kstride = 1
istride_nogw = 1
jstride_nogw = dims.nl[0]
kstride_nogw = dims.nl[0] * dims.nl[1]
elif self.dim ==1:
istride = dims.nlg[1] * dims.nlg[2]
jstride = dims.nlg[2]
kstride = 1
istride_nogw = dims.nl[1]
jstride_nogw = 1
kstride_nogw = dims.nl[0] * dims.nl[1]
else:
istride = dims.nlg[1] * dims.nlg[2]
jstride = dims.nlg[2]
kstride = 1
istride_nogw = dims.nl[1] * dims.nl[2]
jstride_nogw = dims.nl[2]
kstride_nogw = 1
'''
Transpose the data given the strides above. The indicies i, j, k are for the un-transposed data including
ghost points. For the transposed data, excluding ghost points we must stubrtact gw.
'''
with nogil:
for i in xrange(imin,imax):
ishift = i*istride
ishift_nogw = (i-dims.gw) * istride_nogw
for j in xrange(jmin,jmax):
jshift = j * jstride
jshift_nogw = (j-dims.gw) * jstride_nogw
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
ijk_no_gw = ishift_nogw + jshift_nogw+ (k-dims.gw)*kstride_nogw
local_transpose[ijk_no_gw] = data[ijk]
return
cdef void unpack_buffer_double(self,Grid.DimStruct *dims, double *recv_buffer, double [:,:] pencils):
cdef:
long m, p, i
long nl_shift, count
#Loop over the number of processors in the rank
count = 0
for m in xrange(self.size):
if m == 0:
nl_shift = 0
else:
nl_shift += self.nl_map[m-1]
#Loop over the number of local pencils
with nogil:
for p in xrange(self.n_local_pencils):
#Now loop over the number of points in each pencil from the m-th processor
for i in xrange(self.nl_map[m]):
pencils[p,nl_shift + i] = recv_buffer[count]
count += 1
return
cdef void reverse_double(self, Grid.DimStruct *dims, ParallelMPI Pa, double [:,:] pencils, double *data):
cdef:
double [:] send_buffer = np.empty(self.n_local_pencils * self.pencil_length,dtype=np.double,order='c')
double [:] recv_buffer = np.empty(dims.npl,dtype=np.double,order='c')
#This is exactly the inverse operation to forward_double so that the send_counts can be used as the recv_counts
#and vice versa
self.reverse_build_buffer_double(dims,pencils,&send_buffer[0])
if(self.size > 1):
#Do all to all communication
if self.dim == 0:
mpi.MPI_Alltoallv(&send_buffer[0], &self.recv_counts[0], &self.rdispls[0],mpi.MPI_DOUBLE,
&recv_buffer[0], &self.send_counts[0], &self.sdispls[0],mpi.MPI_DOUBLE,Pa.cart_comm_sub_x)
elif self.dim==1:
mpi.MPI_Alltoallv(&send_buffer[0], &self.recv_counts[0], &self.rdispls[0],mpi.MPI_DOUBLE,
&recv_buffer[0], &self.send_counts[0], &self.sdispls[0],mpi.MPI_DOUBLE,Pa.cart_comm_sub_y)
else:
mpi.MPI_Alltoallv(&send_buffer[0], &self.recv_counts[0], &self.rdispls[0],mpi.MPI_DOUBLE,
&recv_buffer[0], &self.send_counts[0], &self.sdispls[0],mpi.MPI_DOUBLE,Pa.cart_comm_sub_z)
self.reverse_unpack_buffer_double(dims,&recv_buffer[0],&data[0])
else:
self.reverse_unpack_buffer_double(dims,&send_buffer[0],&data[0])
return
cdef void reverse_build_buffer_double(self, Grid.DimStruct *dims, double [:,:] pencils, double *send_buffer):
cdef:
long m, p, i
long nl_shift, count
#Loop over the number of processors in the rank
count = 0
for m in xrange(self.size):
if m == 0:
nl_shift = 0
else:
nl_shift += self.nl_map[m-1]
#Loop over the number of local pencils
with nogil:
for p in xrange(self.n_local_pencils):
#Now loop over the number of points in each pencil from the m-th processor
for i in xrange(self.nl_map[m]):
send_buffer[count] = pencils[p,nl_shift + i]
count += 1
return
cdef void reverse_unpack_buffer_double(self, Grid.DimStruct *dims, double *recv_buffer, double *data ):
cdef:
long imin = dims.gw
long jmin = dims.gw
long kmin = dims.gw
long imax = dims.nlg[0] - dims.gw
long jmax = dims.nlg[1] - dims.gw
long kmax = dims.nlg[2] - dims.gw
long istride, jstride, kstride
long istride_nogw, jstride_nogw, kstride_nogw
long ishift, jshift, kshift
long ishift_nogw, jshift_nogw, kshift_nogw
long i,j,k,ijk,ijk_no_gw
if self.dim == 0:
istride = dims.nlg[1] * dims.nlg[2]
jstride = dims.nlg[2]
kstride = 1
istride_nogw = 1
jstride_nogw = dims.nl[0]
kstride_nogw = dims.nl[0] * dims.nl[1]
elif self.dim ==1:
istride = dims.nlg[1] * dims.nlg[2]
jstride = dims.nlg[2]
kstride = 1
istride_nogw = dims.nl[1]
jstride_nogw = 1 #dims.nl[0]
kstride_nogw = dims.nl[0] * dims.nl[1]
else:
istride = dims.nlg[1] * dims.nlg[2]
jstride = dims.nlg[2]
kstride = 1
istride_nogw = dims.nl[1] * dims.nl[2]
jstride_nogw = dims.nl[2]
kstride_nogw = 1
#Build the local buffer
with nogil:
for i in xrange(imin,imax):
ishift = i*istride
ishift_nogw = (i-dims.gw) * istride_nogw
for j in xrange(jmin,jmax):
jshift = j * jstride
jshift_nogw = (j-dims.gw) * jstride_nogw
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
ijk_no_gw = ishift_nogw + jshift_nogw+ (k-dims.gw)*kstride_nogw
data[ijk] = recv_buffer[ijk_no_gw]
return
cdef void build_buffer_complex(self, Grid.DimStruct *dims, complex *data, complex *local_transpose ):
cdef:
long imin = dims.gw
long jmin = dims.gw
long kmin = dims.gw
long imax = dims.nlg[0] - dims.gw
long jmax = dims.nlg[1] - dims.gw
long kmax = dims.nlg[2] - dims.gw
long istride, jstride, kstride
long istride_nogw, jstride_nogw, kstride_nogw
long ishift, jshift, kshift
long ishift_nogw, jshift_nogw, kshift_nogw
long i,j,k,ijk,ijk_no_gw
if self.dim == 0:
istride = dims.nlg[1] * dims.nlg[2]
jstride = dims.nlg[2]
kstride = 1
istride_nogw = 1
jstride_nogw = dims.nl[0]
kstride_nogw = dims.nl[0] * dims.nl[1]
elif self.dim ==1:
istride = dims.nlg[1] * dims.nlg[2]
jstride = dims.nlg[2]
kstride = 1
istride_nogw = dims.nl[1]
jstride_nogw = 1 #dims.nl[0]
kstride_nogw = dims.nl[0] * dims.nl[1]
else:
istride = dims.nlg[1] * dims.nlg[2]
jstride = dims.nlg[2]
kstride = 1
istride_nogw = dims.nl[1] * dims.nl[2]
jstride_nogw = dims.nl[2]
kstride_nogw = 1
#Build the local buffer
with nogil:
for i in xrange(imin,imax):
ishift = i*istride
ishift_nogw = (i-dims.gw) * istride_nogw
for j in xrange(jmin,jmax):
jshift = j * jstride
jshift_nogw = (j-dims.gw) * jstride_nogw
for k in xrange(kmin,kmax):
ijk = ishift + jshift + k
ijk_no_gw = ishift_nogw + jshift_nogw+ (k-dims.gw)*kstride_nogw
local_transpose[ijk_no_gw] = data[ijk]
return
cdef void unpack_buffer_complex(self,Grid.DimStruct *dims, complex *recv_buffer, complex [:,:] pencils):
cdef:
long m, p, i
long nl_shift, count
#Loop over the number of processors in the rank
count = 0
for m in xrange(self.size):
if m == 0:
nl_shift = 0
else:
nl_shift += self.nl_map[m-1]
#Loop over the number of local pencils
with nogil:
for p in xrange(self.n_local_pencils):
#Now loop over the number of points in each pencil from the m-th processor
for i in xrange(self.nl_map[m]):
pencils[p,nl_shift + i] = recv_buffer[count]
count += 1
return
cdef complex [:,:] forward_complex(self, Grid.DimStruct *dims, ParallelMPI Pa ,complex *data):
cdef:
complex [:] local_transpose = np.empty((dims.npl,),dtype=np.complex,order='c')
complex [:] recv_buffer = np.empty((self.n_local_pencils * self.pencil_length),dtype=np.complex,order='c')
complex [:,:] pencils = np.empty((self.n_local_pencils,self.pencil_length),dtype=np.complex,order='c')
#Build send buffer
self.build_buffer_complex(dims, data, &local_transpose[0])
if(self.size > 1):
#Do all to all communication
if self.dim == 0:
mpi.MPI_Alltoallv(&local_transpose[0], &self.send_counts[0], &self.sdispls[0],mpi.MPI_DOUBLE_COMPLEX,
&recv_buffer[0], &self.recv_counts[0], &self.rdispls[0],mpi.MPI_DOUBLE_COMPLEX,Pa.cart_comm_sub_x)
elif self.dim==1:
mpi.MPI_Alltoallv(&local_transpose[0], &self.send_counts[0], &self.sdispls[0],mpi.MPI_DOUBLE_COMPLEX,
&recv_buffer[0], &self.recv_counts[0], &self.rdispls[0],mpi.MPI_DOUBLE_COMPLEX,Pa.cart_comm_sub_y)
else:
mpi.MPI_Alltoallv(&local_transpose[0], &self.send_counts[0], &self.sdispls[0],mpi.MPI_DOUBLE_COMPLEX,
&recv_buffer[0], &self.recv_counts[0], &self.rdispls[0],mpi.MPI_DOUBLE_COMPLEX,Pa.cart_comm_sub_z)
self.unpack_buffer_complex(dims,&recv_buffer[0],pencils)
else:
self.unpack_buffer_complex(dims,&local_transpose[0],pencils)
return pencils
cdef void reverse_complex(self, Grid.DimStruct *dims, ParallelMPI Pa, complex [:,:] pencils, complex *data):
cdef:
complex [:] send_buffer = np.empty(self.n_local_pencils * self.pencil_length,dtype=np.complex,order='c')
complex [:] recv_buffer = np.empty(dims.npl,dtype=np.complex,order='c')
#This is exactly the inverse operation to forward_double so that the send_counts can be used as the recv_counts
#and vice versa
self.reverse_build_buffer_complex(dims,pencils,&send_buffer[0])
if(self.size > 1):
#Do all to all communication
if self.dim == 0:
mpi.MPI_Alltoallv(&send_buffer[0], &self.recv_counts[0], &self.rdispls[0],mpi.MPI_DOUBLE_COMPLEX,
&recv_buffer[0], &self.send_counts[0], &self.sdispls[0],mpi.MPI_DOUBLE_COMPLEX,Pa.cart_comm_sub_x)
elif self.dim==1:
mpi.MPI_Alltoallv(&send_buffer[0], &self.recv_counts[0], &self.rdispls[0],mpi.MPI_DOUBLE_COMPLEX,
&recv_buffer[0], &self.send_counts[0], &self.sdispls[0],mpi.MPI_DOUBLE_COMPLEX,Pa.cart_comm_sub_y)
else:
mpi.MPI_Alltoallv(&send_buffer[0], &self.recv_counts[0], &self.rdispls[0],mpi.MPI_DOUBLE_COMPLEX,
&recv_buffer[0], &self.send_counts[0], &self.sdispls[0],mpi.MPI_DOUBLE_COMPLEX,Pa.cart_comm_sub_z)
self.reverse_unpack_buffer_complex(dims,&recv_buffer[0],data)
else:
self.reverse_unpack_buffer_complex(dims,&send_buffer[0],data)
return
cdef void reverse_build_buffer_complex(self, Grid.DimStruct *dims, complex [:,:] pencils, complex *send_buffer):
cdef:
long m, p, i
long nl_shift, count
#Loop over the number of processors in the rank
count = 0
for m in xrange(self.size):
if m == 0: