-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathempirical_lipschitz_k.py
130 lines (100 loc) · 4.02 KB
/
empirical_lipschitz_k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
""" Offline script for various stuff such as empirically checking the
Lipschitz constant or re-evalutating the models.
"""
from copy import deepcopy
from pathlib import Path
import rlog
import torch
from liftoff import parse_opts
import src.io_utils as ioutil
from src.training import get_estimator
from src.wrappers import get_env
from src.agents import AGENTS
def get_grad_eigenvalues(x, pi):
""" Computes the eigenvalues of the Jaccobian """
y = pi.full[0, pi.action]
(Jyx,) = torch.autograd.grad(y, x)
# return list(Jyx.squeeze().svd().S.detach().cpu().numpy())
return torch.norm(Jyx.flatten()).item()
def check_lipschitz_constant(policy, env, steps):
""" Validation routine """
policy.estimator.eval()
obs, done = env.reset(), False
for _ in range(1, steps + 1):
obs = obs.float().requires_grad_()
policy.estimator.zero_grad()
pi = policy.act(obs)
Jyx_norm = get_grad_eigenvalues(obs, pi)
obs, reward, done, _ = env.step(pi.action)
rlog.put(Jyx_norm=Jyx_norm, reward=reward, done=done, val_frames=1)
if done:
obs, done = env.reset(), False
def load_policy(env, ckpt_path, opt):
opt.action_cnt = env.action_space.n
estimator = get_estimator(opt, env)
agent_args = opt.agent.args
agent_args["epsilon"] = 0.0 # purely max
policy = AGENTS[opt.agent.name]["policy_improvement"](
estimator, opt.action_cnt, **agent_args
)
idx = int(ckpt_path.stem.split("_")[1])
rlog.info(f"Loading {ckpt_path.stem}")
ckpt = ioutil.load_checkpoint(
ckpt_path.parent, idx=idx, verbose=False, device=torch.device(opt.device)
)
if opt.estimator.args["spectral"] is not None:
ioutil.special_conv_uv_buffer_fix(policy.estimator, ckpt["estimator_state"])
policy.estimator.load_state_dict(ckpt["estimator_state"])
return policy, idx
# results/experiment/variation/0
def run(opt):
""" Entry point of the experiment """
# no need to run this for all the seeds
if opt.run_id not in [0, 1, 2]:
return
# this is a bit of a hack, it would be nice to change it
# when launching the experiment. It generally only affects the logger.
if "JyxNorm" not in opt.experiment:
opt.experiment += "--JyxNorm"
rlog.init(opt.experiment, path=opt.out_dir, relative_time=True)
rlog.addMetrics(
rlog.AvgMetric("Jyx_norm_avg", metargs=["Jyx_norm", 1]),
rlog.MaxMetric("Jyx_norm_max", metargs=["Jyx_norm"]),
rlog.AvgMetric("val_R_ep", metargs=["reward", "done"]),
rlog.SumMetric("val_ep_cnt", metargs=["done"]),
rlog.AvgMetric("val_avg_step", metargs=[1, "done"]),
rlog.FPSMetric("val_fps", metargs=["val_frames"]),
)
opt.device = "cuda" if torch.cuda.is_available() else "cpu"
root = Path(opt.out_dir)
ckpt_paths = sorted(root.glob("**/checkpoint*"))
rlog.info("Begin empirical estimation of norm(Jyx).")
rlog.info("Runing experiment on {}.".format(opt.device))
rlog.info("Found {:3d} checkpoints.".format(len(ckpt_paths)))
# Sample only every other third checkpoint
if (Path(opt.out_dir) / "max_ckpt").exists():
ckpt_paths = [
p
for p in ckpt_paths
if int(p.stem.split("_")[1])
== int((Path(opt.out_dir) / "max_ckpt").read_text())
]
rlog.info("IMPORTANT! Found max_ckpt @{}.".format(ckpt_paths[0]))
else:
if "MinAtar" in opt.game:
ckpt_paths = ckpt_paths[0::3]
rlog.warning("IMPORTANT! Sampling only every other third checkpoint.")
else:
ckpt_paths = ckpt_paths[0::5]
rlog.warning("IMPORTANT! Sampling only every other fifth checkpoint.")
for ckpt_path in ckpt_paths:
env = get_env(opt, mode="testing")
policy, step = load_policy(env, ckpt_path, deepcopy(opt))
check_lipschitz_constant(policy, env, opt.valid_step_cnt)
rlog.traceAndLog(step=step)
def main():
""" Liftoff
"""
run(parse_opts())
if __name__ == "__main__":
main()