-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_provider.py
784 lines (655 loc) · 32.5 KB
/
data_provider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
# coding=utf-8
import torch
import torch.utils.data as data
from torchvision.datasets import Kinetics400
from prefetch_generator import BackgroundGenerator
import numpy as np
import pickle
import os
from bigfile import BigFile
from textlib import TextTool, Vocabulary, negation_augumentation
from torchvision.transforms import Compose, Resize, CenterCrop, TenCrop, Lambda, ToTensor, Normalize, RandomResizedCrop
import PIL
import model.clip as clip
import random
import util
import re
class DataLoaderX(torch.utils.data.DataLoader):
pass
# def __iter__(self):
# return BackgroundGenerator(super().__iter__())
def generate_sent_masks(source_lengths):
""" Generate sentence masks for encoder hidden states.
returns enc_masks (Tensor): Tensor of sentence masks of shape (b, max_seq_length),where max_seq_length = max source length """
max_seq_length = max(source_lengths)
batch_size = len(source_lengths)
enc_masks = torch.zeros(batch_size, max_seq_length, dtype=torch.float)
for e_id, src_len in enumerate(source_lengths):
enc_masks[e_id, :src_len] = 1
return enc_masks
# 这些是得到 dataloader 列表的后处理
def collate_vision(data):
vis_feat_tuple, idxs, vis_ids, vis_frame_feat_tuple, vis_origin_frame_tuple = list(zip(*data))
# 得到多视频特征字典
vis_feat_dict = {}
if vis_feat_tuple[0] != {}:
for name in vis_feat_tuple[0].keys():
vis_feat_dict[name] = torch.stack([each[name] for each in vis_feat_tuple], 0)
# 视频帧特征字典,由于帧数不统一,使用 0 填充,并且输出 mask_tensor 矩阵
vis_frame_feat_dict = {} # (batch_size, max_length, embedding_size)
if vis_frame_feat_tuple[0] != {}:
# 得到 source_lengths 列表
name = list(vis_frame_feat_tuple[0].keys())[0]
source_lengths = [each[name].shape[0] for each in vis_frame_feat_tuple]
mask_tensor = generate_sent_masks(source_lengths)
vis_frame_feat_dict['mask_tensor'] = mask_tensor
batch_size, max_length = mask_tensor.shape
for name in vis_frame_feat_tuple[0].keys():
vis_frame_feat_dict[name] = torch.zeros(
batch_size, max_length, vis_frame_feat_tuple[0][name].shape[-1]
)
for index, each in enumerate(vis_frame_feat_tuple):
vis_frame_feat_dict[name][index][0:source_lengths[index]] = each[name]
# 视频帧原始数据
if vis_origin_frame_tuple[0] != None:
pass
idxs = list(idxs) # 如果是 pin_memory = False 必须要这样,否则evaluation.py 无法执行
output_dict = {
'vis_feat_dict': vis_feat_dict, 'idxs': idxs, 'vis_ids': vis_ids,
'vis_frame_feat_dict': vis_frame_feat_dict, 'vis_origin_frame_tuple': vis_origin_frame_tuple
}
return output_dict
def collate_text(data):
data.sort(key=lambda x: len(TextTool.tokenize(x[0]['caption'])), reverse=True)
caption_dict_tuples, idxs, cap_ids = list(zip(*data))
# 得到多特征 caption 字典
caption_feat_dict = {}
for name in caption_dict_tuples[0].keys():
if name == 'caption':
caption_feat_dict[name] = [each[name] for each in caption_dict_tuples]
else:
caption_feat_dict[name] = torch.stack([each[name] for each in caption_dict_tuples], 0)
idxs = list(idxs) # 如果是 pin_memory = False 必须要这样,否则evaluation.py 无法执行
return caption_feat_dict, idxs, cap_ids
def collate_pair(data):
data.sort(key=lambda x: len(TextTool.tokenize(x[1]['caption'])), reverse=True)
vis_feat_tuple, caption_dict_tuples, vis_muti_feat, caption_labels_task2, \
idxs, vis_ids, cap_ids, vis_frame_feat_tuple, caption_labels_task3, mask_task3, \
vis_origin_frame_tuple = list(zip(*data))
if mask_task3[0] is not None:
mask_task3 = np.array((mask_task3))
index_task3 = np.where(mask_task3 > -1)[0]
caption_labels_task3 = list(caption_labels_task3)
caption_labels_task3 = [caption_labels_task3[i] for i in index_task3]
# 视频特征字典
vis_feat_dict = {}
if vis_feat_tuple[0] != {}:
for name in vis_feat_tuple[0].keys():
vis_feat_dict[name] = torch.stack([each[name] for each in vis_feat_tuple], 0)
# 视频帧特征字典,由于帧数不统一,使用 0 填充,并且输出 mask_tensor 矩阵
vis_frame_feat_dict = {}
if vis_frame_feat_tuple[0] != {}:
# 得到 source_lengths 列表
name = list(vis_frame_feat_tuple[0].keys())[0]
source_lengths = [each[name].shape[0] for each in vis_frame_feat_tuple]
mask_tensor = generate_sent_masks(source_lengths)
vis_frame_feat_dict['mask_tensor'] = mask_tensor
batch_size, max_length = mask_tensor.shape
for name in vis_frame_feat_tuple[0].keys():
vis_frame_feat_dict[name] = torch.zeros(
batch_size, max_length, vis_frame_feat_tuple[0][name].shape[-1]
)
for index, each in enumerate(vis_frame_feat_tuple):
vis_frame_feat_dict[name][index][0:source_lengths[index]] = each[name]
if vis_muti_feat[0] is not None:
vis_muti_feat = torch.stack(vis_muti_feat, 0)
# 文本特征字典
caption_feat_dict = {}
for name in caption_dict_tuples[0].keys():
if name == 'caption':
caption_feat_dict[name] = [each[name] for each in caption_dict_tuples]
else:
caption_feat_dict[name] = torch.stack([each[name] for each in caption_dict_tuples], 0)
caption_task3_feat_dict = {}
if mask_task3[0] is not None:
for name in caption_labels_task3[0].keys():
if name == 'caption':
caption_task3_feat_dict[name] = [each[name] for each in caption_labels_task3]
else:
caption_task3_feat_dict[name] = torch.stack([each[name] for each in caption_labels_task3], 0)
idxs = list(idxs) # 如果是 pin_memory = False 必须要这样,否则evaluation.py 无法执行
output = {'vis_feats': vis_feat_dict, 'vis_muti_feat': vis_muti_feat,
'vis_frame_feat_dict': vis_frame_feat_dict,
'vis_origin_frame_tuple': vis_origin_frame_tuple,
'captions': caption_feat_dict, 'captions_task2': caption_labels_task2,
'idxs': idxs, 'vis_ids': vis_ids, 'cap_ids': cap_ids,
'captions_task3': caption_task3_feat_dict, "captions_task3_mask": mask_task3}
return output
def collate_pair_frame_list(data):
"""
输出的 视频帧特征 是一个 list,效率不高,已弃用
:param data:
:return:
"""
data.sort(key=lambda x: len(TextTool.tokenize(x[1]['caption'])), reverse=True)
vis_feat_tuple, caption_dict_tuples, vis_muti_feat, caption_labels_task2, \
idxs, vis_ids, cap_ids, vis_frame_feat_tuple = list(zip(*data))
# 视频特征字典
vis_feat_dict = {}
for name in vis_feat_tuple[0].keys():
vis_feat_dict[name] = torch.stack([each[name] for each in vis_feat_tuple], 0)
# 视频帧特征字典,由于帧数不统一,里面是列表
vis_frame_feat_dict = {}
if vis_frame_feat_tuple[0] != {}:
for name in vis_frame_feat_tuple[0].keys():
vis_frame_feat_dict[name] = [each[name] for each in vis_frame_feat_tuple]
if vis_muti_feat[0] is not None:
vis_muti_feat = torch.stack(vis_muti_feat, 0)
# 文本特征字典
caption_feat_dict = {}
for name in caption_dict_tuples[0].keys():
if name == 'caption':
caption_feat_dict[name] = [each[name] for each in caption_dict_tuples]
else:
caption_feat_dict[name] = torch.stack([each[name] for each in caption_dict_tuples], 0)
idxs = list(idxs) # 如果是 pin_memory = False 必须要这样,否则evaluation.py 无法执行
output = {'vis_feats': vis_feat_dict, 'vis_muti_feat': vis_muti_feat,
'vis_frame_feat_dict': vis_frame_feat_dict,
'captions': caption_feat_dict, 'captions_task2': caption_labels_task2,
'idxs': idxs, 'vis_ids': vis_ids, 'cap_ids': cap_ids}
return output
def collate_pair_subset(data):
data.sort(key=lambda x: len(TextTool.tokenize(x[1])), reverse=True)
vis_feats, captions, captions_task2, idxs, vis_ids, cap_ids = list(zip(*data))
vis_feats = torch.stack(vis_feats, 0)
idxs = list(idxs) # 如果是 pin_memory = False 必须要这样,否则evaluation.py 无法执行
idxs = np.array(idxs) - np.array(idxs).min()
output = {'vis_feats': vis_feats, 'captions': captions, 'captions_task2': captions_task2,
'idxs': idxs, 'vis_ids': vis_ids, 'cap_ids': cap_ids}
return output
class ImageDataset(data.Dataset):
def __init__(self, id_path_file, oversample=False, sample_frame=8, sample_type='uniform'):
"""
:param id_path_file: similar to "video5027_200 ImageData/video5027/video5027_200.jpg \n ..."
:param oversample:
:param sample_type: ['uniform', 'random', ...]
# 均匀取 sample_frame 帧,随机选 sample_frame 帧.
"""
self.sample_frame = sample_frame
self.sample_type = sample_type
collection_path = os.path.dirname(id_path_file)
data = list(map(str.strip, open(id_path_file).readlines()))
self.image_ids = [x.split()[0] for x in data]
self.file_names = [os.path.join(collection_path, x.split()[1]) for x in data]
# Get the mapping of video_id to image path
self.video2Image_path = {}
for each in data:
image_id, image_path = each.split()[0], os.path.join(collection_path, each.split()[1])
video_id = "_".join(image_id.split('_')[:-1])
if video_id == '':
video_id = image_id # this is image dataset
if video_id not in self.video2Image_path:
self.video2Image_path[video_id] = []
self.video2Image_path[video_id].append(image_path)
# rank the image_paths
for video_id in self.video2Image_path:
try:
self.video2Image_path[video_id].sort(key=lambda x: int(os.path.basename(x).split('.')[0].split("_")[-1]))
except ValueError:
self.video2Image_path[video_id].sort(
key=lambda x: os.path.basename(x).split('.')[0].split("_")[-1])
# _, self.preprocess_clip = clip.load("ViT-B/32", device="cpu")
self.preprocess_clip_toTensor = Compose([
# Resize(256),
# CenterCrop(224),
Resize(512),
CenterCrop(512),
lambda image: image.convert("RGB"),
ToTensor(),
])
self.meta = {'mean': [0.48145466, 0.4578275, 0.40821073], 'std': [0.26862954, 0.26130258, 0.27577711]}
self.preprocess_clip_fromTensor = Compose([
Resize(224),
Normalize(self.meta['mean'], self.meta['std']),
])
def __getitem__(self, index):
image_id = self.image_ids[index]
file_name = self.file_names[index]
image = PIL.Image.open(file_name)
if image.mode != 'RGB':
image = image.convert('RGB')
image = self.preprocess_clip_toTensor(image)
image = self.preprocess_clip_fromTensor(image)
return image_id, image
def __len__(self):
return len(self.image_ids)
def get_image_from_videoid_with_clip(self, video_id):
images = None # (image_num, 3, 224, 224)
image_ids = []
frame_indexs = [] # The index of chosen frames
# video_id missing
if video_id not in self.video2Image_path:
print(video_id, "is missing in id.imagepath.txt file")
image_ids = ["%s_%d" % (video_id, 0) for each in range(0, self.sample_frame)]
images = torch.ones((self.sample_frame, 3, 224, 224))
return image_ids, images
if self.sample_type == 'uniform' or len(self.video2Image_path[video_id]) <= self.sample_frame:
frame_indexs = np.linspace(0, len(self.video2Image_path[video_id]) - 1,
self.sample_frame, dtype=int)
elif self.sample_type == 'random':
frame_indexs = random.sample(list(np.arange(0, len(self.video2Image_path[video_id]))), self.sample_frame)
frame_indexs.sort()
else:
raise Exception("Sample_type is not implemented!")
for index in frame_indexs:
each = self.video2Image_path[video_id][index]
try:
image = self.preprocess_clip_toTensor(PIL.Image.open(each))
image = self.preprocess_clip_fromTensor(image).unsqueeze(0) # (1, 3, 224, 224)
except Exception as e:
print(e)
image = torch.ones((1, 3, 224, 224))
if images is None:
images = image
else:
images = torch.cat((images, image), dim=0)
image_ids.append(os.path.basename(each).split('.')[0])
return frame_indexs, images
def get_image_from_image_id(self, image_names):
"""
:param image_names: [video8883_325.jpg / video8883_325, ...]
:return:
"""
image_paths = []
images = None
for image_name in image_names:
video_id = "_".join(image_name.split('_')[:-1])
for each in self.video2Image_path[video_id]:
if each[-4:] not in image_name:
image_name = image_name + each[-4:]
if image_name in each:
image_paths.append(each)
try:
assert len(image_paths) == len(image_names)
except Exception as e:
print(e)
exit(1)
for image_path in image_paths:
image = self.preprocess_clip_toTensor(PIL.Image.open(each))
image = self.preprocess_clip_fromTensor(image).unsqueeze(0) # (1, 3, 224, 224)
if images is None:
images = image
else:
images = torch.cat((images, image), dim=0)
return images, image_paths
def _get_imagePreTensor_from_videoid_with_clip(self, video_id):
images_preprocess = None # (image_num, 3, 224, 224)
if self.sample_type == 'uniform' or len(self.video2Image_path[video_id]) <= self.sample_frame:
frame_indexs = np.linspace(0, len(self.video2Image_path[video_id]) - 1,
self.sample_frame, dtype=int)
elif self.sample_type == 'random':
frame_indexs = random.sample(list(np.arange(0, len(self.video2Image_path[video_id]))), self.sample_frame)
frame_indexs.sort()
else:
raise Exception("Sample_type is not implemented!")
for index in frame_indexs:
each = self.video2Image_path[video_id][index]
try:
image_preprocess = self.preprocess_clip_toTensor(PIL.Image.open(each)).unsqueeze(0) # (1, 3, 224, 224)
except Exception as e:
print(e)
image_preprocess = torch.ones((1, 3, 224, 224))
if images_preprocess is None:
images_preprocess = image_preprocess
else:
images_preprocess = torch.cat((images_preprocess, image_preprocess), dim=0)
return frame_indexs, images_preprocess
def _get_imagePostTensor_from_imagePreTensor_with_clip(self, images_preprocess):
# for each in range(images_preprocess.shape[0]):
# images_preprocess[each] = self.preprocess_clip_fromTensor(images_preprocess[each])
images_preprocess = self.preprocess_clip_fromTensor(images_preprocess)
return images_preprocess
class VisionDataset(data.Dataset):
"""
得到视频的 Dataset
"""
def __init__(self, params):
# 视频特征字典
self.vis_feat_file = None # 默认无 视频特征
if params['vis_feat_files'] is not None:
if len(params['vis_feat_files']) > 0:
self.vis_feat_file_dict = params['vis_feat_files']
self.vis_feat_file = self.vis_feat_file_dict[list(self.vis_feat_file_dict.keys())[0]]
# 视频按帧特征字典
self.multi_frame_feat = False # 默认无 视频按帧特征
# 帧级别格式: frame_name tensors ...
if 'vis_frame_feat_dicts' in params:
if params['vis_frame_feat_dicts'] is not None:
self.max_frame = params['max_frame'] # 最大出现帧数
self.multi_frame_feat = True
self.vis_frame_feat_dict = params['vis_frame_feat_dicts']
self.visual_id2frame_id_dict = self.__get_visual_id2frame_id_dict__(self.vis_frame_feat_dict)
# self.vis_ids = self.vis_feat_file.names if params.get('vis_ids', None) is None else params['vis_ids']
self.vis_ids = params.get('vis_ids', None)
# Faster-rcnn 特征
self.muti_feat = False # 默认无 视频Faster-rcnn特征
if 'vis_muti_feat_dicts' in params:
if params['vis_muti_feat_dicts'] is not None:
self.vis_muti_feat_dicts = params['vis_muti_feat_dicts']
self.muti_feat = True
self.length = len(self.vis_ids)
# 原始帧数据
self.frame_loader = False
if 'config' in params:
if params['config'].frame_loader:
self.frame_loader = True
if 'sample_type' in params:
sample_type = params['sample_type']
else:
sample_type = 'uniform'
self.ImageDataset = ImageDataset(
params['frame_id_path_file'],
sample_frame=params['config'].sample_frame,
sample_type=sample_type,
)
def __get_visual_id2frame_id_dict__(self, vis_frame_feat_dict):
visual_id2frame_id_dict = {}
for each in vis_frame_feat_dict:
frameid_list = vis_frame_feat_dict[each].names
visual_id2frame_id_dict[each] = {}
# 得到 videoid 对应的 frame id
for frame_id in frameid_list:
video_id = "_".join(frame_id.split('_')[0:-1])
if video_id not in visual_id2frame_id_dict[each]:
visual_id2frame_id_dict[each][video_id] = []
visual_id2frame_id_dict[each][video_id].append(frame_id)
# rank the frame_id
for each_name in visual_id2frame_id_dict:
for each_video_id in visual_id2frame_id_dict[each_name]:
visual_id2frame_id_dict[each_name][each_video_id].sort(key=lambda x: int(x.split("_")[-1]))
return visual_id2frame_id_dict
def __getitem__(self, index):
vis_id = self.vis_ids[index]
visual_output = self.get_feat_by_id(vis_id)
vis_tensor_dict = visual_output['vis_tensor_dict']
vis_frame_tensor_dict = visual_output['vis_frame_tensor_dict']
vis_origin_frame_tensor = visual_output['vis_origin_frame_tensor']
return vis_tensor_dict, index, vis_id, vis_frame_tensor_dict, vis_origin_frame_tensor
def get_feat_by_id(self, vis_id):
# 视频特征字典
vis_tensor_dict = {}
if self.vis_feat_file is not None:
for each in self.vis_feat_file_dict.keys():
# try:
# vis_tensor_dict[each] = torch.Tensor(self.vis_feat_file_dict[each].read_one(vis_id))
# except Exception as e:
# print(e)
# print('Vis id: ', vis_id)
# print('feature name: ', each)
vis_tensor_dict[each] = torch.Tensor(self.vis_feat_file_dict[each].read_one(vis_id))
# 视频按帧特征字典
vis_frame_tensor_dict = {}
if self.multi_frame_feat:
for featname in self.visual_id2frame_id_dict:
video_frame_list = self.visual_id2frame_id_dict[featname][vis_id]
if len(video_frame_list) > self.max_frame:
video_frame_list = video_frame_list[0:self.max_frame]
vis_frame_tensor_dict[featname] = torch.Tensor(
self.vis_frame_feat_dict[featname].read(video_frame_list)[1])
# 视频原始帧信息
vis_origin_frame_tensor = None
if self.frame_loader:
frame_ids, vis_origin_frame_tensor = self.ImageDataset.get_image_from_videoid_with_clip(vis_id)
vis_output_dict = {'vis_tensor_dict': vis_tensor_dict,
'vis_frame_tensor_dict': vis_frame_tensor_dict,
'vis_muti_feat_tensor': None,
'vis_origin_frame_tensor': vis_origin_frame_tensor,
}
if self.muti_feat:
vis_muti_feat_list = self.vis_muti_feat_dicts[vis_id]
vis_muti_feat_tensor = torch.Tensor(vis_muti_feat_list)
vis_output_dict['vis_muti_feat_tensor'] = vis_muti_feat_tensor
return vis_output_dict
def __len__(self):
return self.length
class TextDataset(data.Dataset):
"""
得到 文字的 Dataset, self.get_caption_by_id(cap_id)可以得到第几个 caption.
"""
def __init__(self, params, task3=False, capfile_task2=False, capfile_task3=False):
capfile = params['capfile']
# 读取预先计算特征
try:
self.pre_calculate_feat_files = self.get_precalculate_file(params['config'],
os.path.dirname(params['capfile']))
except Exception as e:
print("Read the pre-calculated feature error!", e)
self.pre_calculate_feat_files = {}
if task3 and 'CLIP_encoding' in self.pre_calculate_feat_files:
self.pre_calculate_feat_files.pop('CLIP_encoding')
if capfile_task2:
capfile = params['capfile_task2']
elif capfile_task3:
capfile = params['capfile_task3']
self.capfile_task3 = capfile_task3
self.capfile_task2 = capfile_task2
self.captions = {}
self.cap_ids = []
if capfile_task3:
# mask 0:negtive 1:positive
self.mask_task3 = {}
with open(capfile, 'r') as reader:
lines = reader.readlines()
random.shuffle(lines)
for line in lines:
cap_idfull, caption = line.strip().split(None, 1)
cap_id, cap_id2 = cap_idfull.split('#')
cap_id = cap_id + '#' + cap_id2.split("F")[0]
if "p" in cap_idfull:
self.mask_task3[cap_id] = 1
else:
self.mask_task3[cap_id] = 0
if cap_id not in self.captions:
self.captions[cap_id] = [caption]
self.cap_ids.append(cap_id)
else:
self.captions[cap_id].append(caption)
else:
with open(capfile, 'r') as reader:
for line in reader.readlines():
if line.strip() == "":
continue
if len(line.strip().split(None, 1)) < 2:
cap_id = line.strip().split(None, 1)[0]
caption = ''
else:
cap_id, caption = line.strip().split(None, 1)
self.captions[cap_id] = caption
self.cap_ids.append(cap_id)
# visId2captionId = {}
self.visId2captionId = {}
for each in self.cap_ids:
if each.split('#')[0] not in self.visId2captionId:
self.visId2captionId[each.split('#')[0]] = []
self.visId2captionId[each.split('#')[0]].append(each)
self.length = len(self.cap_ids)
def get_precalculate_file(self, config, TextPath):
precalculate_feat_files = {}
for each_encoding_name in config.text_encoding:
if 'no' in config.text_encoding[each_encoding_name]['name']:
continue
each_encoding_dict = config.text_encoding[each_encoding_name]
if 'dir_name' in each_encoding_dict:
precalculate_feat_files[each_encoding_name] = BigFile(
os.path.join(TextPath, each_encoding_dict['dir_name']))
return precalculate_feat_files
def __getitem__(self, index):
cap_id = self.cap_ids[index]
caption_dict = self.get_caption_dict_by_id(cap_id)
return caption_dict, index, cap_id
def get_caption_dict_by_id(self, cap_id):
caption_dict = {}
pop_list = []
for each in self.pre_calculate_feat_files:
try:
caption_dict[each] = torch.Tensor(self.pre_calculate_feat_files[each].read_one(cap_id))
except Exception as e:
print("{}, Read the pre-calculated feature error!".format(each), e)
pop_list.append(each)
for each in pop_list:
self.pre_calculate_feat_files.pop(each)
caption_dict["caption"] = self.captions[cap_id]
return caption_dict
def get_falsecaption_by_id(self, cap_id):
caption_dict = {}
if cap_id in self.captions:
caption = self.captions[cap_id]
caption = random.choice(caption)
mask = self.mask_task3[cap_id]
pop_list = []
for each in self.pre_calculate_feat_files:
pop_list.append(each)
for each in pop_list:
self.pre_calculate_feat_files.pop(each)
caption_dict["caption"] = caption
else:
mask = -1
caption_dict["caption"] = None
return caption_dict, mask
def __len__(self):
return self.length
class PairDataset(data.Dataset):
"""
得到 vis_feat, caption, capfile_task2, index, vis_id, cap_id
"""
def __init__(self, params):
"""
:param params: params['vis_muti_feat_dicts']: Faster-rcnn 特征
"""
self.params = params
self.visData = VisionDataset(params)
if params['capfile_task2'] is None:
self.txtData_task2 = None
else:
self.txtData_task2 = TextDataset(params, capfile_task2=True)
if params['capfile_task3'] is None:
self.txtData_task3 = None
self.txtData = TextDataset(params)
else:
self.txtData = TextDataset(params, task3=True)
self.txtData_task3 = TextDataset(params, task3=True, capfile_task3=True)
self.txtData_augmentation = self.get_negation_augumentation(self.txtData.captions,
self.txtData_task3.mask_task3)
self.cap_ids = self.txtData.cap_ids
self.length = len(self.cap_ids)
def __getitem__(self, index):
cap_id = self.cap_ids[index]
vis_id = self.get_visId_by_capId(cap_id)
caption_dict = self.txtData.get_caption_dict_by_id(cap_id) # cap_id: 'video7768#14'
# 多视频特征
vis_output_dict = self.visData.get_feat_by_id(vis_id)
vis_feat_dict = vis_output_dict['vis_tensor_dict']
vis_frame_feat_dict = vis_output_dict['vis_frame_tensor_dict'] # 多视频frame特征
# 原始视频帧
vis_origin_frame_tensor = vis_output_dict['vis_origin_frame_tensor']
vis_muti_feat = None
if vis_output_dict['vis_muti_feat_tensor'] is not None:
vis_muti_feat = vis_output_dict['vis_muti_feat_tensor']
# task2
if self.txtData_task2 is None:
caption_labels_task2 = None
else:
caption_labels_task2 = self.txtData_task2.get_caption_dict_by_id(
vis_id) # 由于 task2 名词去掉了‘#’,可以使用video_id 来查找
if self.txtData_task3 is None:
caption_labels_task3 = None
mask_task3 = None
else:
caption_labels_task3, mask_task3 = self.txtData_task3.get_falsecaption_by_id(cap_id)
if mask_task3 == 1:
caption = random.choice(self.txtData_augmentation[cap_id])
output_dict = {
}
return vis_feat_dict, caption_dict, vis_muti_feat, caption_labels_task2, index, vis_id, cap_id, \
vis_frame_feat_dict, caption_labels_task3, mask_task3, vis_origin_frame_tensor
def get_visId_by_capId(self, cap_id):
vis_id = cap_id.split('#', 1)[0]
return vis_id
def get_negation_augumentation(self, captions, mask):
dataset = {}
for capid, neg_mask in mask.items():
if neg_mask:
dataset[capid] = negation_augumentation(captions[capid])
return dataset
def __len__(self):
return self.length
def vis_provider(params):
data_loader = DataLoaderX(dataset=VisionDataset(params),
batch_size=params.get('batch_size', 1),
shuffle=params.get('shuffle', False),
pin_memory=params.get('pin_memory', False),
num_workers=params.get('num_workers', 0),
sampler=params.get('sampler', None),
collate_fn=collate_vision)
return data_loader
def txt_provider(params):
data_loader = DataLoaderX(dataset=TextDataset(params, task3=params.get('task3')),
batch_size=params.get('batch_size', 1),
shuffle=params.get('shuffle', False),
pin_memory=params.get('pin_memory', False),
num_workers=params.get('num_workers', 0),
sampler=params.get('sampler', None),
collate_fn=collate_text)
return data_loader
def pair_provider(params):
data_loader = DataLoaderX(dataset=PairDataset(params),
batch_size=params.get('batch_size', 1),
shuffle=params.get('shuffle', False),
pin_memory=params.get('pin_memory', False),
num_workers=params.get('num_workers', 0),
sampler=params.get('sampler', None),
collate_fn=collate_pair,
)
return data_loader
def pair_provider_subset(params, induce):
subset = torch.utils.data.dataset.Subset(PairDataset(params), induce)
if params['sampler'] is not None:
params['sampler'] = torch.utils.data.distributed.DistributedSampler(subset, shuffle=True)
print(params)
data_loader = DataLoaderX(subset,
batch_size=params.get('batch_size', 1),
shuffle=params.get('shuffle', False),
pin_memory=params.get('pin_memory', False),
num_workers=params.get('num_workers', 0),
sampler=params.get('sampler', None),
collate_fn=collate_pair_subset)
return data_loader
return data_loader
if __name__ == '__main__':
import os
data_path = '/data2/hf/VisualSearch'
collection = 'tgif-msrvtt10k'
vid_feat = 'mean_resnext101_resnet152'
vid_feat_dir = os.path.join(data_path, collection, 'FeatureData', vid_feat)
vis_loader = vis_provider({'vis_feat_files': vid_feat_dir, 'batch_size': 100, 'num_workers': 2})
for i, (feat_vecs, idxs, vis_ids) in enumerate(vis_loader):
print(i, feat_vecs.shape, len(idxs))
break
capfile = os.path.join(data_path, collection, 'TextData', '%s.caption.txt' % collection)
txt_loader = txt_provider({'capfile': capfile, 'batch_size': 100, 'num_workers': 2})
for i, (captions, idxs, cap_ids) in enumerate(txt_loader):
print(i, captions, len(cap_ids))
print([len(cap) for cap in captions])
break
capfile_task2 = os.path.join(data_path, collection, 'TextData', '%s.caption.nouns.txt' % collection)
pair_loader = pair_provider({'vis_feat_files': vid_feat_dir, 'capfile': capfile,
'capfile_task2': capfile_task2, 'batch_size': 100, 'num_workers': 2, 'shuffle': True})
for i, (vis_feats, captions, captions_task2, idxs, vis_ids, cap_ids) in enumerate(pair_loader):
print(i, vis_feats.shape, captions[:10], len(cap_ids))
print("next")
print(idxs)
print(vis_ids)
print(cap_ids)
print(captions_task2)
# print [len(cap) for cap in captions]
break