-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy pathpredict.py
145 lines (125 loc) · 5.93 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import shutil
import tarfile
import zipfile
import mimetypes
from PIL import Image
from typing import List
from cog import BasePredictor, Input, Path
from comfyui import ComfyUI
from weights_downloader import WeightsDownloader
from cog_model_helpers import optimise_images
from config import config
os.environ["DOWNLOAD_LATEST_WEIGHTS_MANIFEST"] = "true"
mimetypes.add_type("image/webp", ".webp")
OUTPUT_DIR = "/tmp/outputs"
INPUT_DIR = "/tmp/inputs"
COMFYUI_TEMP_OUTPUT_DIR = "ComfyUI/temp"
ALL_DIRECTORIES = [OUTPUT_DIR, INPUT_DIR, COMFYUI_TEMP_OUTPUT_DIR]
with open("examples/api_workflows/advanced_live_portrait_api.json", "r") as file:
EXAMPLE_WORKFLOW_JSON = file.read()
class Predictor(BasePredictor):
def setup(self, weights: str):
if bool(weights):
self.handle_user_weights(weights)
self.comfyUI = ComfyUI("127.0.0.1:8188")
self.comfyUI.start_server(OUTPUT_DIR, INPUT_DIR)
def handle_user_weights(self, weights: str):
print(f"Downloading user weights from: {weights}")
WeightsDownloader.download("weights.tar", weights, config["USER_WEIGHTS_PATH"])
for item in os.listdir(config["USER_WEIGHTS_PATH"]):
source = os.path.join(config["USER_WEIGHTS_PATH"], item)
destination = os.path.join(config["MODELS_PATH"], item)
if os.path.isdir(source):
if not os.path.exists(destination):
print(f"Moving {source} to {destination}")
shutil.move(source, destination)
else:
for root, _, files in os.walk(source):
for file in files:
if not os.path.exists(os.path.join(destination, file)):
print(
f"Moving {os.path.join(root, file)} to {destination}"
)
shutil.move(os.path.join(root, file), destination)
else:
print(
f"Skipping {file} because it already exists in {destination}"
)
def handle_input_file(self, input_file: Path):
file_extension = self.get_file_extension(input_file)
if file_extension == ".tar":
with tarfile.open(input_file, "r") as tar:
tar.extractall(INPUT_DIR)
elif file_extension == ".zip":
with zipfile.ZipFile(input_file, "r") as zip_ref:
zip_ref.extractall(INPUT_DIR)
elif file_extension in [".jpg", ".jpeg", ".png", ".webp"]:
shutil.copy(input_file, os.path.join(INPUT_DIR, f"input{file_extension}"))
else:
raise ValueError(f"Unsupported file type: {file_extension}")
print("====================================")
print(f"Inputs uploaded to {INPUT_DIR}:")
self.comfyUI.get_files(INPUT_DIR)
print("====================================")
def get_file_extension(self, input_file: Path) -> str:
file_extension = os.path.splitext(input_file)[1].lower()
if not file_extension:
with open(input_file, "rb") as f:
file_signature = f.read(4)
if file_signature.startswith(b"\x1f\x8b"): # gzip signature
file_extension = ".tar"
elif file_signature.startswith(b"PK"): # zip signature
file_extension = ".zip"
else:
try:
with Image.open(input_file) as img:
file_extension = f".{img.format.lower()}"
print(f"Determined file type: {file_extension}")
except Exception as e:
raise ValueError(
f"Unable to determine file type for: {input_file}, {e}"
)
return file_extension
def predict(
self,
workflow_json: str = Input(
description="Your ComfyUI workflow as JSON. You must use the API version of your workflow. Get it from ComfyUI using ‘Save (API format)’. Instructions here: https://github.com/fofr/cog-comfyui",
default="",
),
input_file: Path = Input(
description="Input image, tar or zip file. Read guidance on workflows and input files here: https://github.com/fofr/cog-comfyui. Alternatively, you can replace inputs with URLs in your JSON workflow and the model will download them.",
default=None,
),
return_temp_files: bool = Input(
description="Return any temporary files, such as preprocessed controlnet images. Useful for debugging.",
default=False,
),
output_format: str = optimise_images.predict_output_format(),
output_quality: int = optimise_images.predict_output_quality(),
randomise_seeds: bool = Input(
description="Automatically randomise seeds (seed, noise_seed, rand_seed)",
default=True,
),
force_reset_cache: bool = Input(
description="Force reset the ComfyUI cache before running the workflow. Useful for debugging.",
default=False,
),
) -> List[Path]:
"""Run a single prediction on the model"""
self.comfyUI.cleanup(ALL_DIRECTORIES)
if input_file:
self.handle_input_file(input_file)
wf = self.comfyUI.load_workflow(workflow_json or EXAMPLE_WORKFLOW_JSON)
self.comfyUI.connect()
if force_reset_cache or not randomise_seeds:
self.comfyUI.reset_execution_cache()
if randomise_seeds:
self.comfyUI.randomise_seeds(wf)
self.comfyUI.run_workflow(wf)
output_directories = [OUTPUT_DIR]
if return_temp_files:
output_directories.append(COMFYUI_TEMP_OUTPUT_DIR)
return optimise_images.optimise_image_files(
output_format, output_quality, self.comfyUI.get_files(output_directories)
)