-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmodel.go
764 lines (685 loc) · 16.2 KB
/
model.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
package rush
import (
"fmt"
"image"
"math"
"math/rand"
"sort"
"strings"
)
// Orientation indicates which direction a Piece can move. Horizontal pieces
// can move left and right. Vertical pieces can move up and down.
type Orientation int
const (
Horizontal Orientation = iota
Vertical
)
// Piece represents a piece (a car or a truck) on the grid. Its position is
// a zero-indexed int, 0 <= Position < W*H. Its size specifies how many cells
// it occupies. Its orientation specifies whether it is vertical or horizontal.
type Piece struct {
Position int
Size int
Orientation Orientation
}
func (piece *Piece) Stride(w int) int {
if piece.Orientation == Horizontal {
return 1
}
return w
}
func (piece *Piece) Row(w int) int {
return piece.Position / w
}
func (piece *Piece) Col(w int) int {
return piece.Position % w
}
// Move represents a move to make on the board. Piece indicates which piece
// (by index) to move and Steps is a non-zero positive or negative int that
// specifies how many cells to move the piece.
type Move struct {
Piece int
Steps int
}
func (move Move) AbsSteps() int {
if move.Steps < 0 {
return -move.Steps
}
return move.Steps
}
func (move Move) Label() string {
return string('A' + move.Piece)
}
func (move Move) String() string {
return fmt.Sprintf("%s%+d", move.Label(), move.Steps)
}
// Board represents the complete puzzle state. The size of the grid, the
// placement, size, orientation of the pieces. The placement of walls
// (immovable obstacles). Which cells are occupied, either by a piece or a
// wall.
type Board struct {
Width int
Height int
Pieces []Piece
Walls []int
occupied []bool
memoKey MemoKey
}
func NewEmptyBoard(w, h int) *Board {
occupied := make([]bool, w*h)
memoKey := MakeMemoKey(nil)
return &Board{w, h, nil, nil, occupied, memoKey}
}
func NewRandomBoard(w, h, primaryRow, primarySize, numPieces, numWalls int) *Board {
board := NewEmptyBoard(w, h)
board.AddPiece(Piece{primaryRow * w, primarySize, Horizontal})
for i := 1; i < numPieces; i++ {
board.mutateAddPiece(100)
}
for i := 0; i < numWalls; i++ {
board.mutateAddWall(100)
}
return board
}
func NewBoardFromString(desc string) (*Board, error) {
s := int(math.Sqrt(float64(len(desc))))
if s*s != len(desc) {
return nil, fmt.Errorf("NewBoardFromString only supports square boards")
}
rows := make([]string, s)
for i := range rows {
rows[i] = desc[i*s : i*s+s]
}
return NewBoard(rows)
}
func NewBoard(desc []string) (*Board, error) {
// determine board size
h := len(desc)
if h < MinBoardSize {
return nil, fmt.Errorf("board height must be >= %d", MinBoardSize)
}
w := len(desc[0])
if w < MinBoardSize {
return nil, fmt.Errorf("board width must be >= %d", MinBoardSize)
}
// identify occupied cells and their labels
occupied := make([]bool, w*h)
positions := make(map[string][]int)
var walls []int
for y, row := range desc {
for x, value := range row {
label := string(value)
if label == "." || label == "o" {
continue
}
i := y*w + x
occupied[i] = true
if label == "x" {
walls = append(walls, i)
} else {
positions[label] = append(positions[label], i)
}
}
}
// find and sort distinct piece labels
labels := make([]string, 0, len(positions))
for label := range positions {
labels = append(labels, label)
}
sort.Strings(labels)
// validate and create pieces
pieces := make([]Piece, 0, len(labels))
for _, label := range labels {
ps := positions[label]
if len(ps) < MinPieceSize {
return nil, fmt.Errorf("piece %s length must be >= %d", label, MinPieceSize)
}
stride := ps[1] - ps[0]
if stride != 1 && stride != w {
return nil, fmt.Errorf("piece %s has invalid shape", label)
}
for i := 2; i < len(ps); i++ {
if ps[i]-ps[i-1] != stride {
return nil, fmt.Errorf("piece %s has invalid shape", label)
}
}
dir := Horizontal
if stride != 1 {
dir = Vertical
}
pieces = append(pieces, Piece{ps[0], len(ps), dir})
}
// create board
board := &Board{w, h, pieces, walls, occupied, MakeMemoKey(pieces)}
return board, board.Validate()
}
func (board *Board) String() string {
w := board.Width
h := board.Height
grid := make([]string, w*h)
for i := range grid {
grid[i] = "."
}
for _, i := range board.Walls {
grid[i] = "x"
}
for i, piece := range board.Pieces {
label := string('A' + i)
idx := piece.Position
stride := piece.Stride(w)
for j := 0; j < piece.Size; j++ {
grid[idx] = label
idx += stride
}
}
rows := make([]string, h)
for y := 0; y < h; y++ {
i := y * w
rows[y] = strings.Join(grid[i:i+w], "")
}
return strings.Join(rows, "\n")
}
func (board *Board) Hash() string {
w := board.Width
h := board.Height
grid := make([]rune, w*h)
for i := range grid {
grid[i] = '.'
}
for _, i := range board.Walls {
grid[i] = 'x'
}
for i, piece := range board.Pieces {
label := rune('A' + i)
idx := piece.Position
stride := 1
if piece.Orientation == Vertical {
stride = w
}
for j := 0; j < piece.Size; j++ {
grid[idx] = label
idx += stride
}
}
return string(grid)
}
func (board *Board) Copy() *Board {
w := board.Width
h := board.Height
pieces := make([]Piece, len(board.Pieces))
walls := make([]int, len(board.Walls))
occupied := make([]bool, len(board.occupied))
memoKey := board.memoKey
copy(pieces, board.Pieces)
copy(walls, board.Walls)
copy(occupied, board.occupied)
return &Board{w, h, pieces, walls, occupied, memoKey}
}
func (board *Board) SortPieces() {
a := board.Pieces[1:]
sort.Slice(a, func(i, j int) bool {
return a[i].Position < a[j].Position
})
board.memoKey = MakeMemoKey(board.Pieces)
}
func (board *Board) HasFullRowOrCol() bool {
w := board.Width
h := board.Height
for y := 0; y < h; y++ {
var size int
for _, piece := range board.Pieces {
if piece.Orientation == Horizontal && piece.Row(w) == y {
size += piece.Size
}
}
if size == w {
return true
}
}
for x := 0; x < w; x++ {
var size int
for _, piece := range board.Pieces {
if piece.Orientation == Vertical && piece.Col(w) == x {
size += piece.Size
}
}
if size == h {
return true
}
}
return false
}
func (board *Board) Validate() error {
w := board.Width
h := board.Height
pieces := board.Pieces
// board size must be >= MinBoardSize
if w < MinBoardSize {
return fmt.Errorf("board width must be >= %d", MinBoardSize)
}
if h < MinBoardSize {
return fmt.Errorf("board height must be >= %d", MinBoardSize)
}
// board must have at least one piece
if len(pieces) < 1 {
return fmt.Errorf("board must have at least one piece")
}
// board must have <= MaxPieces
if len(pieces) > MaxPieces {
return fmt.Errorf("board must have <= %d pieces", MaxPieces)
}
// primary piece must be horizontal
if pieces[0].Orientation != Horizontal {
return fmt.Errorf("primary piece must be horizontal")
}
// validate walls
occupied := make([]bool, w*h)
for _, i := range board.Walls {
// wall must be inside the grid
if i < 0 || i >= w*h {
return fmt.Errorf("a wall is outside of the grid")
}
// walls must not intersect
if occupied[i] {
return fmt.Errorf("a wall intersects another wall")
}
occupied[i] = true
}
// validate pieces
primaryRow := pieces[0].Row(w)
for i, piece := range pieces {
label := string('A' + i)
row := piece.Row(w)
col := piece.Col(w)
// piece size must be >= MinPieceSize
if piece.Size < MinPieceSize {
return fmt.Errorf("piece %s must have size >= %d", label, MinPieceSize)
}
// no horizontal pieces can be on the same row as the primary piece
if i > 0 && piece.Orientation == Horizontal && row == primaryRow {
return fmt.Errorf("no horizontal pieces can be on the primary row")
}
// pieces must be contained within the grid
if piece.Orientation == Horizontal {
if row < 0 || row >= h || col < 0 || col+piece.Size > w {
return fmt.Errorf("piece %s is outside of the grid", label)
}
} else {
if col < 0 || col >= w || row < 0 || row+piece.Size > h {
return fmt.Errorf("piece %s is outside of the grid", label)
}
}
// pieces must not intersect
idx := piece.Position
stride := piece.Stride(w)
for j := 0; j < piece.Size; j++ {
if occupied[idx] {
return fmt.Errorf("piece %s intersects with another piece", label)
}
occupied[idx] = true
idx += stride
}
}
return nil
}
func (board *Board) isOccupied(piece Piece) bool {
idx := piece.Position
stride := piece.Stride(board.Width)
for i := 0; i < piece.Size; i++ {
if board.occupied[idx] {
return true
}
idx += stride
}
return false
}
func (board *Board) setOccupied(piece Piece, value bool) {
idx := piece.Position
stride := piece.Stride(board.Width)
for i := 0; i < piece.Size; i++ {
board.occupied[idx] = value
idx += stride
}
}
func (board *Board) addPiece(piece Piece) {
i := len(board.Pieces)
board.Pieces = append(board.Pieces, piece)
board.setOccupied(piece, true)
board.memoKey[i] = piece.Position
}
func (board *Board) AddPiece(piece Piece) bool {
if board.isOccupied(piece) {
return false
}
board.addPiece(piece)
return true
}
func (board *Board) AddWall(i int) bool {
if board.occupied[i] {
return false
}
board.Walls = append(board.Walls, i)
board.occupied[i] = true
return true
}
func (board *Board) RemovePiece(i int) {
board.setOccupied(board.Pieces[i], false)
j := len(board.Pieces) - 1
board.Pieces[i] = board.Pieces[j]
board.memoKey[i] = board.Pieces[i].Position
board.Pieces = board.Pieces[:j]
board.memoKey[j] = 0
}
func (board *Board) RemoveLastPiece() {
board.RemovePiece(len(board.Pieces) - 1)
}
func (board *Board) RemoveWall(i int) {
board.occupied[board.Walls[i]] = false
a := board.Walls
a[i] = a[len(a)-1]
a = a[:len(a)-1]
board.Walls = a
}
func (board *Board) Target() int {
w := board.Width
piece := board.Pieces[0]
row := piece.Row(w)
return (row+1)*w - piece.Size
}
func (board *Board) Moves(buf []Move) []Move {
moves := buf[:0]
w := board.Width
h := board.Height
for i, piece := range board.Pieces {
var stride, reverseSteps, forwardSteps int
if piece.Orientation == Vertical {
y := piece.Position / w
reverseSteps = -y
forwardSteps = h - piece.Size - y
stride = w
} else {
x := piece.Position % w
reverseSteps = -x
forwardSteps = w - piece.Size - x
stride = 1
}
// reverse (negative steps)
idx := piece.Position - stride
for steps := -1; steps >= reverseSteps; steps-- {
if board.occupied[idx] {
break
}
moves = append(moves, Move{i, steps})
idx -= stride
}
// forward (positive steps)
idx = piece.Position + piece.Size*stride
for steps := 1; steps <= forwardSteps; steps++ {
if board.occupied[idx] {
break
}
moves = append(moves, Move{i, steps})
idx += stride
}
}
return moves
}
func (board *Board) DoMove(move Move) {
piece := &board.Pieces[move.Piece]
stride := piece.Stride(board.Width)
idx := piece.Position
for i := 0; i < piece.Size; i++ {
board.occupied[idx] = false
idx += stride
}
piece.Position += stride * move.Steps
board.memoKey[move.Piece] = piece.Position
idx = piece.Position
for i := 0; i < piece.Size; i++ {
board.occupied[idx] = true
idx += stride
}
}
func (board *Board) UndoMove(move Move) {
board.DoMove(Move{move.Piece, -move.Steps})
}
func (board *Board) StateIterator() <-chan *Board {
ch := make(chan *Board, 16)
board = board.Copy()
memo := NewMemo()
var f func(int, int)
f = func(depth, previousPiece int) {
if !memo.Add(board.MemoKey(), 0) {
return
}
ch <- board.Copy()
for _, move := range board.Moves(nil) {
if move.Piece == previousPiece {
continue
}
board.DoMove(move)
f(depth+1, move.Piece)
board.UndoMove(move)
}
if depth == 0 {
close(ch)
}
}
go f(0, -1)
return ch
}
func (board *Board) ReachableStates() int {
var count int
memo := NewMemo()
var f func(int)
f = func(previousPiece int) {
if !memo.Add(board.MemoKey(), 0) {
return
}
count++
for _, move := range board.Moves(nil) {
if move.Piece == previousPiece {
continue
}
board.DoMove(move)
f(move.Piece)
board.UndoMove(move)
}
}
f(-1)
return count
}
func (board *Board) MemoKey() *MemoKey {
return &board.memoKey
}
func (board *Board) Solve() Solution {
return NewSolver(board).Solve()
}
func (board *Board) Unsolve() (*Board, Solution) {
return NewUnsolver(board).Unsolve()
}
func (board *Board) UnsafeSolve() Solution {
return NewSolver(board).UnsafeSolve()
}
func (board *Board) UnsafeUnsolve() (*Board, Solution) {
return NewUnsolver(board).UnsafeUnsolve()
}
func (board *Board) Render() image.Image {
return renderBoard(board)
}
func (board *Board) Impossible() bool {
return theStaticAnalyzer.Impossible(board)
}
func (board *Board) BlockedSquares() []int {
return theStaticAnalyzer.BlockedSquares(board)
}
func (board *Board) Canonicalize() *Board {
bestKey := board.memoKey
bestBoard := board.Copy()
for b := range board.StateIterator() {
if b.memoKey.Less(&bestKey, true) {
bestKey = b.memoKey
bestBoard = b.Copy()
}
}
bestBoard.SortPieces()
return bestBoard
}
// random board mutation below
func (board *Board) Energy() float64 {
solution := board.Solve()
if !solution.Solvable {
return 1
}
e := float64(solution.NumMoves)
e += float64(solution.NumSteps) / 100
return -e
}
type UndoFunc func()
func (board *Board) Mutate() UndoFunc {
const maxAttempts = 100
for {
var undo UndoFunc
switch rand.Intn(7 + 3) {
case 0:
undo = board.mutateAddPiece(maxAttempts)
case 1:
undo = board.mutateAddWall(maxAttempts)
case 2:
undo = board.mutateRemovePiece()
case 3:
undo = board.mutateRemoveWall()
case 4:
undo = board.mutateRemoveAndAddPiece(maxAttempts)
case 5:
undo = board.mutateRemoveAndAddWall(maxAttempts)
default:
undo = board.mutateMakeMove()
}
if undo != nil {
return undo
}
}
}
func (board *Board) mutateMakeMove() UndoFunc {
moves := board.Moves(nil)
if len(moves) == 0 {
return nil
}
move := moves[rand.Intn(len(moves))]
board.DoMove(move)
return func() {
board.UndoMove(move)
}
}
func (board *Board) mutateAddPiece(maxAttempts int) UndoFunc {
if len(board.Pieces) >= 8 {
return nil
}
piece, ok := board.randomPiece(maxAttempts)
if !ok {
return nil
}
i := len(board.Pieces)
board.AddPiece(piece)
return func() {
board.RemovePiece(i)
}
}
func (board *Board) mutateAddWall(maxAttempts int) UndoFunc {
if len(board.Walls) >= 0 {
return nil
}
wall, ok := board.randomWall(maxAttempts)
if !ok {
return nil
}
i := len(board.Walls)
board.AddWall(wall)
return func() {
board.RemoveWall(i)
}
}
func (board *Board) mutateRemovePiece() UndoFunc {
// never remove the primary piece
if len(board.Pieces) < 2 {
return nil
}
i := rand.Intn(len(board.Pieces)-1) + 1
piece := board.Pieces[i]
board.RemovePiece(i)
return func() {
board.AddPiece(piece)
}
}
func (board *Board) mutateRemoveWall() UndoFunc {
if len(board.Walls) == 0 {
return nil
}
i := rand.Intn(len(board.Walls))
wall := board.Walls[i]
board.RemoveWall(i)
return func() {
board.AddWall(wall)
}
}
func (board *Board) mutateRemoveAndAddPiece(maxAttempts int) UndoFunc {
undoRemove := board.mutateRemovePiece()
if undoRemove == nil {
return nil
}
undoAdd := board.mutateAddPiece(maxAttempts)
if undoAdd == nil {
return undoRemove
}
return func() {
undoAdd()
undoRemove()
}
}
func (board *Board) mutateRemoveAndAddWall(maxAttempts int) UndoFunc {
undoRemove := board.mutateRemoveWall()
if undoRemove == nil {
return nil
}
undoAdd := board.mutateAddWall(maxAttempts)
if undoAdd == nil {
return undoRemove
}
return func() {
undoAdd()
undoRemove()
}
}
func (board *Board) randomPiece(maxAttempts int) (Piece, bool) {
w := board.Width
h := board.Height
for i := 0; i < maxAttempts; i++ {
size := 2 + rand.Intn(2) // TODO: weighted?
orientation := Orientation(rand.Intn(2))
var x, y int
if orientation == Vertical {
x = rand.Intn(w)
y = rand.Intn(h - size + 1)
} else {
x = rand.Intn(w - size + 1)
y = rand.Intn(h)
}
position := y*w + x
piece := Piece{position, size, orientation}
if !board.isOccupied(piece) {
return piece, true
}
}
return Piece{}, false
}
func (board *Board) randomWall(maxAttempts int) (int, bool) {
n := board.Width * board.Height
for i := 0; i < maxAttempts; i++ {
p := rand.Intn(n)
if !board.occupied[p] {
return p, true
}
}
return 0, false
}