forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
testing_utils.py
2007 lines (1546 loc) · 66.3 KB
/
testing_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import contextlib
import doctest
import functools
import inspect
import logging
import multiprocessing
import os
import re
import shlex
import shutil
import subprocess
import sys
import tempfile
import time
import unittest
from collections.abc import Mapping
from io import StringIO
from pathlib import Path
from typing import Iterable, Iterator, List, Optional, Union
from unittest import mock
import huggingface_hub
import requests
from transformers import logging as transformers_logging
from .deepspeed import is_deepspeed_available
from .integrations import (
is_clearml_available,
is_fairscale_available,
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
)
from .utils import (
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bs4_available,
is_cython_available,
is_decord_available,
is_detectron2_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_onnx_available,
is_optimum_available,
is_pandas_available,
is_phonemizer_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_safetensors_available,
is_scipy_available,
is_sentencepiece_available,
is_soundfile_availble,
is_spacy_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tf2onnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bf16_cpu_available,
is_torch_bf16_gpu_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tf32_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdynamo_available,
is_torchvision_available,
is_vision_available,
strtobool,
)
if is_accelerate_available():
from accelerate.state import AcceleratorState, PartialState
if is_pytest_available():
from _pytest.doctest import (
Module,
_get_checker,
_get_continue_on_failure,
_get_runner,
_is_mocked,
_patch_unwrap_mock_aware,
get_optionflags,
import_path,
)
from _pytest.outcomes import skip
from pytest import DoctestItem
else:
Module = object
DoctestItem = object
SMALL_MODEL_IDENTIFIER = "julien-c/bert-xsmall-dummy"
DUMMY_UNKNOWN_IDENTIFIER = "julien-c/dummy-unknown"
DUMMY_DIFF_TOKENIZER_IDENTIFIER = "julien-c/dummy-diff-tokenizer"
# Used to test Auto{Config, Model, Tokenizer} model_type detection.
# Used to test the hub
USER = "__DUMMY_TRANSFORMERS_USER__"
ENDPOINT_STAGING = "https://hub-ci.huggingface.co"
# Not critical, only usable on the sandboxed CI instance.
TOKEN = "hf_94wBhPGp6KrrTH3KDchhKpRxZwd6dmHWLL"
def parse_flag_from_env(key, default=False):
try:
value = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_value = default
else:
# KEY is set, convert it to True or False.
try:
_value = strtobool(value)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"If set, {key} must be yes or no.")
return _value
def parse_int_from_env(key, default=None):
try:
value = os.environ[key]
except KeyError:
_value = default
else:
try:
_value = int(value)
except ValueError:
raise ValueError(f"If set, {key} must be a int.")
return _value
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
_run_pt_tf_cross_tests = parse_flag_from_env("RUN_PT_TF_CROSS_TESTS", default=True)
_run_pt_flax_cross_tests = parse_flag_from_env("RUN_PT_FLAX_CROSS_TESTS", default=True)
_run_custom_tokenizers = parse_flag_from_env("RUN_CUSTOM_TOKENIZERS", default=False)
_run_staging = parse_flag_from_env("HUGGINGFACE_CO_STAGING", default=False)
_tf_gpu_memory_limit = parse_int_from_env("TF_GPU_MEMORY_LIMIT", default=None)
_run_pipeline_tests = parse_flag_from_env("RUN_PIPELINE_TESTS", default=True)
_run_tool_tests = parse_flag_from_env("RUN_TOOL_TESTS", default=False)
def is_pt_tf_cross_test(test_case):
"""
Decorator marking a test as a test that control interactions between PyTorch and TensorFlow.
PT+TF tests are skipped by default and we can run only them by setting RUN_PT_TF_CROSS_TESTS environment variable
to a truthy value and selecting the is_pt_tf_cross_test pytest mark.
"""
if not _run_pt_tf_cross_tests or not is_torch_available() or not is_tf_available():
return unittest.skip("test is PT+TF test")(test_case)
else:
try:
import pytest # We don't need a hard dependency on pytest in the main library
except ImportError:
return test_case
else:
return pytest.mark.is_pt_tf_cross_test()(test_case)
def is_pt_flax_cross_test(test_case):
"""
Decorator marking a test as a test that control interactions between PyTorch and Flax
PT+FLAX tests are skipped by default and we can run only them by setting RUN_PT_FLAX_CROSS_TESTS environment
variable to a truthy value and selecting the is_pt_flax_cross_test pytest mark.
"""
if not _run_pt_flax_cross_tests or not is_torch_available() or not is_flax_available():
return unittest.skip("test is PT+FLAX test")(test_case)
else:
try:
import pytest # We don't need a hard dependency on pytest in the main library
except ImportError:
return test_case
else:
return pytest.mark.is_pt_flax_cross_test()(test_case)
def is_staging_test(test_case):
"""
Decorator marking a test as a staging test.
Those tests will run using the staging environment of huggingface.co instead of the real model hub.
"""
if not _run_staging:
return unittest.skip("test is staging test")(test_case)
else:
try:
import pytest # We don't need a hard dependency on pytest in the main library
except ImportError:
return test_case
else:
return pytest.mark.is_staging_test()(test_case)
def is_pipeline_test(test_case):
"""
Decorator marking a test as a pipeline test. If RUN_PIPELINE_TESTS is set to a falsy value, those tests will be
skipped.
"""
if not _run_pipeline_tests:
return unittest.skip("test is pipeline test")(test_case)
else:
try:
import pytest # We don't need a hard dependency on pytest in the main library
except ImportError:
return test_case
else:
return pytest.mark.is_pipeline_test()(test_case)
def is_tool_test(test_case):
"""
Decorator marking a test as a tool test. If RUN_TOOL_TESTS is set to a falsy value, those tests will be skipped.
"""
if not _run_tool_tests:
return unittest.skip("test is a tool test")(test_case)
else:
try:
import pytest # We don't need a hard dependency on pytest in the main library
except ImportError:
return test_case
else:
return pytest.mark.is_tool_test()(test_case)
def slow(test_case):
"""
Decorator marking a test as slow.
Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.
"""
return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
def tooslow(test_case):
"""
Decorator marking a test as too slow.
Slow tests are skipped while they're in the process of being fixed. No test should stay tagged as "tooslow" as
these will not be tested by the CI.
"""
return unittest.skip("test is too slow")(test_case)
def custom_tokenizers(test_case):
"""
Decorator marking a test for a custom tokenizer.
Custom tokenizers require additional dependencies, and are skipped by default. Set the RUN_CUSTOM_TOKENIZERS
environment variable to a truthy value to run them.
"""
return unittest.skipUnless(_run_custom_tokenizers, "test of custom tokenizers")(test_case)
def require_bs4(test_case):
"""
Decorator marking a test that requires BeautifulSoup4. These tests are skipped when BeautifulSoup4 isn't installed.
"""
return unittest.skipUnless(is_bs4_available(), "test requires BeautifulSoup4")(test_case)
def require_accelerate(test_case):
"""
Decorator marking a test that requires accelerate. These tests are skipped when accelerate isn't installed.
"""
return unittest.skipUnless(is_accelerate_available(), "test requires accelerate")(test_case)
def require_safetensors(test_case):
"""
Decorator marking a test that requires safetensors. These tests are skipped when safetensors isn't installed.
"""
return unittest.skipUnless(is_safetensors_available(), "test requires safetensors")(test_case)
def require_rjieba(test_case):
"""
Decorator marking a test that requires rjieba. These tests are skipped when rjieba isn't installed.
"""
return unittest.skipUnless(is_rjieba_available(), "test requires rjieba")(test_case)
def require_jieba(test_case):
"""
Decorator marking a test that requires jieba. These tests are skipped when jieba isn't installed.
"""
return unittest.skipUnless(is_jieba_available(), "test requires jieba")(test_case)
def require_tf2onnx(test_case):
return unittest.skipUnless(is_tf2onnx_available(), "test requires tf2onnx")(test_case)
def require_onnx(test_case):
return unittest.skipUnless(is_onnx_available(), "test requires ONNX")(test_case)
def require_timm(test_case):
"""
Decorator marking a test that requires Timm.
These tests are skipped when Timm isn't installed.
"""
return unittest.skipUnless(is_timm_available(), "test requires Timm")(test_case)
def require_natten(test_case):
"""
Decorator marking a test that requires NATTEN.
These tests are skipped when NATTEN isn't installed.
"""
return unittest.skipUnless(is_natten_available(), "test requires natten")(test_case)
def require_torch(test_case):
"""
Decorator marking a test that requires PyTorch.
These tests are skipped when PyTorch isn't installed.
"""
return unittest.skipUnless(is_torch_available(), "test requires PyTorch")(test_case)
def require_torchvision(test_case):
"""
Decorator marking a test that requires Torchvision.
These tests are skipped when Torchvision isn't installed.
"""
return unittest.skipUnless(is_torchvision_available(), "test requires Torchvision")(test_case)
def require_torch_or_tf(test_case):
"""
Decorator marking a test that requires PyTorch or TensorFlow.
These tests are skipped when neither PyTorch not TensorFlow is installed.
"""
return unittest.skipUnless(is_torch_available() or is_tf_available(), "test requires PyTorch or TensorFlow")(
test_case
)
def require_intel_extension_for_pytorch(test_case):
"""
Decorator marking a test that requires Intel Extension for PyTorch.
These tests are skipped when Intel Extension for PyTorch isn't installed or it does not match current PyTorch
version.
"""
return unittest.skipUnless(
is_ipex_available(),
"test requires Intel Extension for PyTorch to be installed and match current PyTorch version, see"
" https://github.com/intel/intel-extension-for-pytorch",
)(test_case)
def require_tensorflow_probability(test_case):
"""
Decorator marking a test that requires TensorFlow probability.
These tests are skipped when TensorFlow probability isn't installed.
"""
return unittest.skipUnless(is_tensorflow_probability_available(), "test requires TensorFlow probability")(
test_case
)
def require_torchaudio(test_case):
"""
Decorator marking a test that requires torchaudio. These tests are skipped when torchaudio isn't installed.
"""
return unittest.skipUnless(is_torchaudio_available(), "test requires torchaudio")(test_case)
def require_tf(test_case):
"""
Decorator marking a test that requires TensorFlow. These tests are skipped when TensorFlow isn't installed.
"""
return unittest.skipUnless(is_tf_available(), "test requires TensorFlow")(test_case)
def require_flax(test_case):
"""
Decorator marking a test that requires JAX & Flax. These tests are skipped when one / both are not installed
"""
return unittest.skipUnless(is_flax_available(), "test requires JAX & Flax")(test_case)
def require_sentencepiece(test_case):
"""
Decorator marking a test that requires SentencePiece. These tests are skipped when SentencePiece isn't installed.
"""
return unittest.skipUnless(is_sentencepiece_available(), "test requires SentencePiece")(test_case)
def require_scipy(test_case):
"""
Decorator marking a test that requires Scipy. These tests are skipped when SentencePiece isn't installed.
"""
return unittest.skipUnless(is_scipy_available(), "test requires Scipy")(test_case)
def require_tokenizers(test_case):
"""
Decorator marking a test that requires 🤗 Tokenizers. These tests are skipped when 🤗 Tokenizers isn't installed.
"""
return unittest.skipUnless(is_tokenizers_available(), "test requires tokenizers")(test_case)
def require_tensorflow_text(test_case):
"""
Decorator marking a test that requires tensorflow_text. These tests are skipped when tensroflow_text isn't
installed.
"""
return unittest.skipUnless(is_tensorflow_text_available(), "test requires tensorflow_text")(test_case)
def require_keras_nlp(test_case):
"""
Decorator marking a test that requires keras_nlp. These tests are skipped when keras_nlp isn't installed.
"""
return unittest.skipUnless(is_keras_nlp_available(), "test requires keras_nlp")(test_case)
def require_pandas(test_case):
"""
Decorator marking a test that requires pandas. These tests are skipped when pandas isn't installed.
"""
return unittest.skipUnless(is_pandas_available(), "test requires pandas")(test_case)
def require_pytesseract(test_case):
"""
Decorator marking a test that requires PyTesseract. These tests are skipped when PyTesseract isn't installed.
"""
return unittest.skipUnless(is_pytesseract_available(), "test requires PyTesseract")(test_case)
def require_pytorch_quantization(test_case):
"""
Decorator marking a test that requires PyTorch Quantization Toolkit. These tests are skipped when PyTorch
Quantization Toolkit isn't installed.
"""
return unittest.skipUnless(is_pytorch_quantization_available(), "test requires PyTorch Quantization Toolkit")(
test_case
)
def require_vision(test_case):
"""
Decorator marking a test that requires the vision dependencies. These tests are skipped when torchaudio isn't
installed.
"""
return unittest.skipUnless(is_vision_available(), "test requires vision")(test_case)
def require_ftfy(test_case):
"""
Decorator marking a test that requires ftfy. These tests are skipped when ftfy isn't installed.
"""
return unittest.skipUnless(is_ftfy_available(), "test requires ftfy")(test_case)
def require_spacy(test_case):
"""
Decorator marking a test that requires SpaCy. These tests are skipped when SpaCy isn't installed.
"""
return unittest.skipUnless(is_spacy_available(), "test requires spacy")(test_case)
def require_decord(test_case):
"""
Decorator marking a test that requires decord. These tests are skipped when decord isn't installed.
"""
return unittest.skipUnless(is_decord_available(), "test requires decord")(test_case)
def require_torch_multi_gpu(test_case):
"""
Decorator marking a test that requires a multi-GPU setup (in PyTorch). These tests are skipped on a machine without
multiple GPUs.
To run *only* the multi_gpu tests, assuming all test names contain multi_gpu: $ pytest -sv ./tests -k "multi_gpu"
"""
if not is_torch_available():
return unittest.skip("test requires PyTorch")(test_case)
import torch
return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs")(test_case)
def require_torch_non_multi_gpu(test_case):
"""
Decorator marking a test that requires 0 or 1 GPU setup (in PyTorch).
"""
if not is_torch_available():
return unittest.skip("test requires PyTorch")(test_case)
import torch
return unittest.skipUnless(torch.cuda.device_count() < 2, "test requires 0 or 1 GPU")(test_case)
def require_torch_up_to_2_gpus(test_case):
"""
Decorator marking a test that requires 0 or 1 or 2 GPU setup (in PyTorch).
"""
if not is_torch_available():
return unittest.skip("test requires PyTorch")(test_case)
import torch
return unittest.skipUnless(torch.cuda.device_count() < 3, "test requires 0 or 1 or 2 GPUs")(test_case)
def require_torch_tpu(test_case):
"""
Decorator marking a test that requires a TPU (in PyTorch).
"""
return unittest.skipUnless(is_torch_tpu_available(check_device=False), "test requires PyTorch TPU")(test_case)
def require_torch_neuroncore(test_case):
"""
Decorator marking a test that requires NeuronCore (in PyTorch).
"""
return unittest.skipUnless(is_torch_neuroncore_available(check_device=False), "test requires PyTorch NeuronCore")(
test_case
)
if is_torch_available():
# Set env var CUDA_VISIBLE_DEVICES="" to force cpu-mode
import torch
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
else:
torch_device = None
if is_tf_available():
import tensorflow as tf
if is_flax_available():
import jax
jax_device = jax.default_backend()
else:
jax_device = None
def require_torchdynamo(test_case):
"""Decorator marking a test that requires TorchDynamo"""
return unittest.skipUnless(is_torchdynamo_available(), "test requires TorchDynamo")(test_case)
def require_torch_tensorrt_fx(test_case):
"""Decorator marking a test that requires Torch-TensorRT FX"""
return unittest.skipUnless(is_torch_tensorrt_fx_available(), "test requires Torch-TensorRT FX")(test_case)
def require_torch_gpu(test_case):
"""Decorator marking a test that requires CUDA and PyTorch."""
return unittest.skipUnless(torch_device == "cuda", "test requires CUDA")(test_case)
def require_torch_bf16_gpu(test_case):
"""Decorator marking a test that requires torch>=1.10, using Ampere GPU or newer arch with cuda>=11.0"""
return unittest.skipUnless(
is_torch_bf16_gpu_available(),
"test requires torch>=1.10, using Ampere GPU or newer arch with cuda>=11.0",
)(test_case)
def require_torch_bf16_cpu(test_case):
"""Decorator marking a test that requires torch>=1.10, using CPU."""
return unittest.skipUnless(
is_torch_bf16_cpu_available(),
"test requires torch>=1.10, using CPU",
)(test_case)
def require_torch_tf32(test_case):
"""Decorator marking a test that requires Ampere or a newer GPU arch, cuda>=11 and torch>=1.7."""
return unittest.skipUnless(
is_torch_tf32_available(), "test requires Ampere or a newer GPU arch, cuda>=11 and torch>=1.7"
)(test_case)
def require_detectron2(test_case):
"""Decorator marking a test that requires detectron2."""
return unittest.skipUnless(is_detectron2_available(), "test requires `detectron2`")(test_case)
def require_faiss(test_case):
"""Decorator marking a test that requires faiss."""
return unittest.skipUnless(is_faiss_available(), "test requires `faiss`")(test_case)
def require_optuna(test_case):
"""
Decorator marking a test that requires optuna.
These tests are skipped when optuna isn't installed.
"""
return unittest.skipUnless(is_optuna_available(), "test requires optuna")(test_case)
def require_ray(test_case):
"""
Decorator marking a test that requires Ray/tune.
These tests are skipped when Ray/tune isn't installed.
"""
return unittest.skipUnless(is_ray_available(), "test requires Ray/tune")(test_case)
def require_sigopt(test_case):
"""
Decorator marking a test that requires SigOpt.
These tests are skipped when SigOpt isn't installed.
"""
return unittest.skipUnless(is_sigopt_available(), "test requires SigOpt")(test_case)
def require_wandb(test_case):
"""
Decorator marking a test that requires wandb.
These tests are skipped when wandb isn't installed.
"""
return unittest.skipUnless(is_wandb_available(), "test requires wandb")(test_case)
def require_clearml(test_case):
"""
Decorator marking a test requires clearml.
These tests are skipped when clearml isn't installed.
"""
return unittest.skipUnless(is_clearml_available(), "test requires clearml")(test_case)
def require_soundfile(test_case):
"""
Decorator marking a test that requires soundfile
These tests are skipped when soundfile isn't installed.
"""
return unittest.skipUnless(is_soundfile_availble(), "test requires soundfile")(test_case)
def require_deepspeed(test_case):
"""
Decorator marking a test that requires deepspeed
"""
return unittest.skipUnless(is_deepspeed_available(), "test requires deepspeed")(test_case)
def require_fairscale(test_case):
"""
Decorator marking a test that requires fairscale
"""
return unittest.skipUnless(is_fairscale_available(), "test requires fairscale")(test_case)
def require_apex(test_case):
"""
Decorator marking a test that requires apex
"""
return unittest.skipUnless(is_apex_available(), "test requires apex")(test_case)
def require_bitsandbytes(test_case):
"""
Decorator for bits and bytes (bnb) dependency
"""
return unittest.skipUnless(is_bitsandbytes_available(), "test requires bnb")(test_case)
def require_optimum(test_case):
"""
Decorator for optimum dependency
"""
return unittest.skipUnless(is_optimum_available(), "test requires optimum")(test_case)
def require_phonemizer(test_case):
"""
Decorator marking a test that requires phonemizer
"""
return unittest.skipUnless(is_phonemizer_available(), "test requires phonemizer")(test_case)
def require_pyctcdecode(test_case):
"""
Decorator marking a test that requires pyctcdecode
"""
return unittest.skipUnless(is_pyctcdecode_available(), "test requires pyctcdecode")(test_case)
def require_librosa(test_case):
"""
Decorator marking a test that requires librosa
"""
return unittest.skipUnless(is_librosa_available(), "test requires librosa")(test_case)
def cmd_exists(cmd):
return shutil.which(cmd) is not None
def require_usr_bin_time(test_case):
"""
Decorator marking a test that requires `/usr/bin/time`
"""
return unittest.skipUnless(cmd_exists("/usr/bin/time"), "test requires /usr/bin/time")(test_case)
def require_sudachi(test_case):
"""
Decorator marking a test that requires sudachi
"""
return unittest.skipUnless(is_sudachi_available(), "test requires sudachi")(test_case)
def require_jumanpp(test_case):
"""
Decorator marking a test that requires jumanpp
"""
return unittest.skipUnless(is_jumanpp_available(), "test requires jumanpp")(test_case)
def require_cython(test_case):
"""
Decorator marking a test that requires jumanpp
"""
return unittest.skipUnless(is_cython_available(), "test requires cython")(test_case)
def get_gpu_count():
"""
Return the number of available gpus (regardless of whether torch, tf or jax is used)
"""
if is_torch_available():
import torch
return torch.cuda.device_count()
elif is_tf_available():
import tensorflow as tf
return len(tf.config.list_physical_devices("GPU"))
elif is_flax_available():
import jax
return jax.device_count()
else:
return 0
def get_tests_dir(append_path=None):
"""
Args:
append_path: optional path to append to the tests dir path
Return:
The full path to the `tests` dir, so that the tests can be invoked from anywhere. Optionally `append_path` is
joined after the `tests` dir the former is provided.
"""
# this function caller's __file__
caller__file__ = inspect.stack()[1][1]
tests_dir = os.path.abspath(os.path.dirname(caller__file__))
while not tests_dir.endswith("tests"):
tests_dir = os.path.dirname(tests_dir)
if append_path:
return os.path.join(tests_dir, append_path)
else:
return tests_dir
#
# Helper functions for dealing with testing text outputs
# The original code came from:
# https://github.com/fastai/fastai/blob/master/tests/utils/text.py
# When any function contains print() calls that get overwritten, like progress bars,
# a special care needs to be applied, since under pytest -s captured output (capsys
# or contextlib.redirect_stdout) contains any temporary printed strings, followed by
# \r's. This helper function ensures that the buffer will contain the same output
# with and without -s in pytest, by turning:
# foo bar\r tar mar\r final message
# into:
# final message
# it can handle a single string or a multiline buffer
def apply_print_resets(buf):
return re.sub(r"^.*\r", "", buf, 0, re.M)
def assert_screenout(out, what):
out_pr = apply_print_resets(out).lower()
match_str = out_pr.find(what.lower())
assert match_str != -1, f"expecting to find {what} in output: f{out_pr}"
class CaptureStd:
"""
Context manager to capture:
- stdout: replay it, clean it up and make it available via `obj.out`
- stderr: replay it and make it available via `obj.err`
Args:
out (`bool`, *optional*, defaults to `True`): Whether to capture stdout or not.
err (`bool`, *optional*, defaults to `True`): Whether to capture stderr or not.
replay (`bool`, *optional*, defaults to `True`): Whether to replay or not.
By default each captured stream gets replayed back on context's exit, so that one can see what the test was
doing. If this is a not wanted behavior and the captured data shouldn't be replayed, pass `replay=False` to
disable this feature.
Examples:
```python
# to capture stdout only with auto-replay
with CaptureStdout() as cs:
print("Secret message")
assert "message" in cs.out
# to capture stderr only with auto-replay
import sys
with CaptureStderr() as cs:
print("Warning: ", file=sys.stderr)
assert "Warning" in cs.err
# to capture both streams with auto-replay
with CaptureStd() as cs:
print("Secret message")
print("Warning: ", file=sys.stderr)
assert "message" in cs.out
assert "Warning" in cs.err
# to capture just one of the streams, and not the other, with auto-replay
with CaptureStd(err=False) as cs:
print("Secret message")
assert "message" in cs.out
# but best use the stream-specific subclasses
# to capture without auto-replay
with CaptureStd(replay=False) as cs:
print("Secret message")
assert "message" in cs.out
```"""
def __init__(self, out=True, err=True, replay=True):
self.replay = replay
if out:
self.out_buf = StringIO()
self.out = "error: CaptureStd context is unfinished yet, called too early"
else:
self.out_buf = None
self.out = "not capturing stdout"
if err:
self.err_buf = StringIO()
self.err = "error: CaptureStd context is unfinished yet, called too early"
else:
self.err_buf = None
self.err = "not capturing stderr"
def __enter__(self):
if self.out_buf:
self.out_old = sys.stdout
sys.stdout = self.out_buf
if self.err_buf:
self.err_old = sys.stderr
sys.stderr = self.err_buf
return self
def __exit__(self, *exc):
if self.out_buf:
sys.stdout = self.out_old
captured = self.out_buf.getvalue()
if self.replay:
sys.stdout.write(captured)
self.out = apply_print_resets(captured)
if self.err_buf:
sys.stderr = self.err_old
captured = self.err_buf.getvalue()
if self.replay:
sys.stderr.write(captured)
self.err = captured
def __repr__(self):
msg = ""
if self.out_buf:
msg += f"stdout: {self.out}\n"
if self.err_buf:
msg += f"stderr: {self.err}\n"
return msg
# in tests it's the best to capture only the stream that's wanted, otherwise
# it's easy to miss things, so unless you need to capture both streams, use the
# subclasses below (less typing). Or alternatively, configure `CaptureStd` to
# disable the stream you don't need to test.
class CaptureStdout(CaptureStd):
"""Same as CaptureStd but captures only stdout"""
def __init__(self, replay=True):
super().__init__(err=False, replay=replay)
class CaptureStderr(CaptureStd):
"""Same as CaptureStd but captures only stderr"""
def __init__(self, replay=True):
super().__init__(out=False, replay=replay)
class CaptureLogger:
"""
Context manager to capture `logging` streams
Args:
logger: 'logging` logger object
Returns:
The captured output is available via `self.out`
Example:
```python
>>> from transformers import logging
>>> from transformers.testing_utils import CaptureLogger