Skip to content

Latest commit

 

History

History
86 lines (75 loc) · 2.63 KB

README.md

File metadata and controls

86 lines (75 loc) · 2.63 KB

MusiComb

Official code for MusiComb: a Sample-based Approach to Music Generation Through Constraints (ICTAI 2023).

See the Project page for some demos.

Setup

  1. Clone the repo and cd into its directory:

    $ git clone https://github.com/frallebini/midicomb.git
    $ cd midicomb
    
  2. Create a virtual environment and install the required packages:

    $ python -m venv .venv
    $ source .venv/bin/activate
    $ pip install -r requirements.txt
    

    Note: the code has been tested with Python 3.8.5

  3. Unzip the dataset:

    $ tar -xvf dataset/commu_midi.tar -C dataset/
    

    You should get the following directory structure:

    dataset
    ├── commu_meta.csv
    ├── commu_midi
    │   ├── train
    │   │   └── raw
    │   │       └── midifiles(.mid)
    │   └── val
    │       └── raw
    │           └── midifiles(.mid)
    ├── commu_midi.tar
    └── README.md
    
  4. [OPTIONAL] If you want the samples to be generated (see the following section), download the model weights from here and move them into the ckpt directory:

    ckpt
    ├── checkpoint_best.pt
    └── README.md
    

    Note: the weights are provided by Hyun et al. together with their implementation.

Run

Run generate.py with its required arguments, e.g.

$ python generate.py \
--bpm 130 \
--key aminor \
--time_signature 4/4 \
--num_measures 8 \
--genre newage \
--rhythm standard \
--chord_progression Am-F-C-G-Am-F-C-G

You can find a list of legal values for each argument here.

The above command produces a musical composition by combining samples from the dataset. If you want to combine new, generated samples instead, just add the --generate_samples flag, e.g.

$ python generate.py \
--bpm 130 \
--key aminor \
--time_signature 4/4 \
--num_measures 8 \
--genre newage \
--rhythm standard \
--chord_progression Am-F-C-G-Am-F-C-G \
--generate_samples

Note: the above command runs either on CPU or on a single GPU. The available device will be detected automatically.

Once the program successfully terminates, you will find an out directory with the following structure:

out
└── <date>_<time>
    ├── metadata.yaml
    └── tune.mid

where metadata.yaml contains the arguments of the corresponding run and tune.mid is the generated MIDI file.