-
Notifications
You must be signed in to change notification settings - Fork 142
/
Copy pathop_bake_organize_names.py
163 lines (121 loc) · 4.52 KB
/
op_bake_organize_names.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import bpy
import operator
from mathutils import Vector
from . import utilities_bake
class op(bpy.types.Operator):
bl_idname = "uv.textools_bake_organize_names"
bl_label = "Match Names"
bl_description = "Match high poly object names to low poly objects by their bounding boxes."
bl_options = {'REGISTER', 'UNDO'}
@classmethod
def poll(cls, context):
# Require 2 or more objects to sort
if len(bpy.context.selected_objects) <= 1:
return False
return True
def execute(self, context):
sort_objects(self)
return {'FINISHED'}
def sort_objects(self):
# Collect objects
objects = []
bounds = {}
for obj in bpy.context.selected_objects:
if obj.type == 'MESH':
objects.append(obj)
bounds[obj] = get_bbox(obj)
print(f"Objects {len(objects)}x")
# Get smallest side of any bounding box
min_side = min(bounds[objects[0]]['size'])
avg_side = 0
for obj in bounds:
min_side = min(min_side, *bounds[obj]['size'])
avg_side += sum(bounds[obj]['size'])
avg_side /= (len(bounds)*3)
# Get all Low and high poly objects
objects_low = [obj for obj in objects if utilities_bake.get_object_type(obj)=='low']
objects_high = [obj for obj in objects if utilities_bake.get_object_type(obj)=='high']
if 0 in (len(objects_low), len(objects_high)):
self.report({'ERROR_INVALID_INPUT'}, f"There are no {'low' if len(objects_low) == 0 else 'high'} poly objects selected")
print(f"Low {len(objects_low)}x, High {len(objects_high)}x")
pairs_low_high = {}
objects_left_high = objects_high.copy()
for obj_A in objects_low:
matches = {}
for obj_B in objects_left_high:
score = get_score(obj_A, obj_B)
p = score / avg_side
if 0 < p <= 0.65:
matches[obj_B] = p
else:
print(f"Not matched: {p} ")
if len(matches):
sorted_matches = sorted(matches.items(), key=operator.itemgetter(1))
for i in range(0, len(sorted_matches)):
A = obj_A
B = sorted_matches[i][0]
p = sorted_matches[i][1]
print(f"Check: {int(p * 100.0)}% '{A.name}' = '{B.name}'")
# Remove from list
objects_left_high.remove(sorted_matches[0][0])
pairs_low_high[obj_A] = sorted_matches[0][0]
print("")
# objects_unsorted = [obj for obj in objects if (obj not in pairs_low_high.values() and obj not in pairs_low_high.keys() )]
bpy.ops.object.select_all(action='DESELECT')
for obj_A in pairs_low_high:
obj_B = pairs_low_high[obj_A]
try:
obj_B.name = utilities_bake.get_set_name(obj_A)+" high"
obj_A.select_set(True)
obj_B.select_set(True)
except:
print("Fail")
print(f"Matched {len(pairs_low_high)}x")
def get_score(A, B):
bbox_A = get_bbox(A)
bbox_B = get_bbox(B)
# Not colliding
if not is_colliding(bbox_A, bbox_B):
return -1.0
# Position
delta_pos = (bbox_B['center'] - bbox_A['center']).length
# Volume
volume_A = bbox_A['size'].x * bbox_A['size'].y * bbox_A['size'].z
volume_B = bbox_B['size'].x * bbox_B['size'].y * bbox_B['size'].z
delta_vol = (max(volume_A, volume_B) - min(volume_A, volume_B))/3.0
# Longest side
side_A_max = max(bbox_A['size'].x, bbox_A['size'].y, bbox_A['size'].z)
side_B_max = max(bbox_B['size'].x, bbox_B['size'].y, bbox_B['size'].z)
delta_size_max = abs(side_A_max - side_B_max)
return delta_pos + delta_vol + delta_size_max
def get_bbox(obj):
corners = [obj.matrix_world @ Vector(corner) for corner in obj.bound_box]
# Get world space Min / Max
box_min = corners[0].copy()
box_max = corners[0].copy()
for corner in corners:
# box_min.x = -8
box_min.x = min(box_min.x, corner.x)
box_min.y = min(box_min.y, corner.y)
box_min.z = min(box_min.z, corner.z)
box_max.x = max(box_max.x, corner.x)
box_max.y = max(box_max.y, corner.y)
box_max.z = max(box_max.z, corner.z)
return {
'min': box_min,
'max': box_max,
'size': (box_max-box_min),
'center': box_min+(box_max-box_min)/2
}
def is_colliding(bbox_A, bbox_B):
def is_collide_1D(A_min, A_max, B_min, B_max):
# One line is inside the other
length_A = A_max-A_min
length_B = B_max-B_min
center_A = A_min + length_A/2
center_B = B_min + length_B/2
return abs(center_A - center_B) <= (length_A+length_B)/2
collide_x = is_collide_1D(bbox_A['min'].x, bbox_A['max'].x, bbox_B['min'].x, bbox_B['max'].x)
collide_y = is_collide_1D(bbox_A['min'].y, bbox_A['max'].y, bbox_B['min'].y, bbox_B['max'].y)
collide_z = is_collide_1D(bbox_A['min'].z, bbox_A['max'].z, bbox_B['min'].z, bbox_B['max'].z)
return collide_x and collide_y and collide_z