-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_60min_32filters.py
153 lines (126 loc) · 5.92 KB
/
train_60min_32filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import numpy as np
import pandas as pd
import time
import cv2 as cv
import matplotlib.pyplot as plt
print('import basic')
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
print('import torch')
from src import data, evaluate, model, preprocessing, visualization, train
from src.lib import utils
from src.data import MontevideoFoldersDataset
from src.dl_models.unet import UNet, UNet2
from src.dl_models.unet_advanced import R2U_Net, AttU_Net, R2AttU_Net, NestedUNet
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
print('finis import')
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print('using device:', device)
#TRAINNING WITH TRAIN.PY
torch.manual_seed(50)
dataset = 'region3' # 'mvd', 'uru', 'region3'
epochs = 100
batch_size = 3
normalize = preprocessing.normalize_pixels(mean0 = False) #values between [0,1]
train_mvd = MontevideoFoldersDataset(path='/clusteruy/home03/DeepCloud/deepCloud/data/' + dataset + '/train/',
in_channel=3,
out_channel=6,
min_time_diff=5,
max_time_diff=15,
transform = normalize,
output_last=True)
val_mvd = MontevideoFoldersDataset(path='/clusteruy/home03/DeepCloud/deepCloud/data/' + dataset + '/validation/',
in_channel=3,
out_channel=6,
min_time_diff=5,
max_time_diff=15,
transform = normalize,
output_last=True)
train_loader = DataLoader(train_mvd, batch_size=batch_size, shuffle=True, num_workers=2)
val_loader = DataLoader(val_mvd, batch_size=batch_size, shuffle=True, num_workers=2)
retrain = False
learning_rates = [1e-3]
arquitecture = [''] # ['R2', 'Att', 'R2Att', 'Nested']
init_filters = 32
grid_search = [(lr, mdl) for lr in learning_rates for mdl in arquitecture]
for lr, mdl in grid_search:
if mdl == '':
model = UNet(n_channels=3, n_classes=1, bilinear=True, output_activation='sigmoid', filters=init_filters).to(device)
if mdl == 'R2':
model = R2U_Net(img_ch=3, output_ch=1, t=2)
if mdl == 'Att':
model = AttU_Net(img_ch=3, output_ch=1, output_activation='sigmoid', init_filter=64)
if mdl == 'R2Att':
model = R2AttU_Net(in_ch=3, out_ch=1, t=2)
if mdl == 'Nested':
model = NestedUNet(in_ch=3, out_ch=1, output_activation='sigmoid', init_filter=64)
if torch.cuda.device_count() > 1:
print('Model Paralleling')
model = nn.DataParallel(model)
MODEL_PATH = 'checkpoints/R3/60min/'
if retrain:
checkpoint = torch.load(MODEL_PATH, map_location=device)
if torch.cuda.device_count() == 1:
for _ in range(len(checkpoint['model_state_dict'])):
key, value = checkpoint['model_state_dict'].popitem(False)
checkpoint['model_state_dict'][key[7:] if key[:7] == 'module.' else key] = value
model.load_state_dict(checkpoint['model_state_dict'])
else:
checkpoint = None
model.to(device)
if not retrain:
model.apply(train.weights_init)
optimizer = optim.Adam(model.parameters(), lr=lr ,betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, mode='min', factor=0.5, patience=15, min_lr=1e-7)
save_dict = True
train_loss = 'mae' # ['mae', 'mse', 'ssim']
loss_for_scheduler = 'mae'
predict_diff = False
checkpoint_folder = 'R3/60min/'
model_name = f'60min_UNET_{mdl}_{dataset}_{train_loss}_filters{init_filters}_sigmoid_diff{predict_diff}_retrain{retrain}'
comment = f' batch_size:{batch_size} lr:{lr} model:{mdl} train_loss:{train_loss} predict_diff{predict_diff}'
writer = SummaryWriter(log_dir='runs/predict_60min/'+model_name, comment=comment)
#writer = None
print(model_name)
TRAIN_LOSS, VAL_MAE_LOSS, VAL_MSE_LOSS, VAL_SSIM_LOSS = train.train_model_full(
model=model,
train_loss=train_loss,
optimizer=optimizer,
device=device,
train_loader=train_loader,
val_loader=val_loader,
epochs=epochs,
checkpoint_every=20,
verbose=True,
writer=writer,
scheduler=scheduler,
loss_for_scheduler=loss_for_scheduler,
model_name=checkpoint_folder + model_name,
predict_diff=predict_diff,
retrain=retrain,
trained_model_dict=checkpoint,
testing_loop=False)
if writer and False:
writer.add_hparams(
{"lr": lr, "bsize": batch_size, "model":mdl},
{
"loss train": TRAIN_LOSS[-1],
"loss validation": VAL_MAE_LOSS[-1] ,
},)
if writer:
writer.close()
if save_dict:
learning_values = {
'model_name': model_name,
'train_loss': train_loss,
'predict diff': predict_diff,
'validation_loss': loss_for_scheduler,
'train_loss_epoch_mean': TRAIN_LOSS,
'val_mae_loss': VAL_MAE_LOSS,
'val_mse_loss': VAL_MSE_LOSS,
'val_ssim_loss': VAL_SSIM_LOSS
}
utils.save_pickle_dict(name=model_name, dict_=learning_values)