forked from LouisRouillard/EEGNoise2Noise
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
87 lines (75 loc) · 1.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# %%
from torch.utils.data import DataLoader, Dataset, TensorDataset
from torch import nn
from brain_denoise.models.linear_net import LinearNet
from brain_denoise.models.modules import UNet1D
from brain_denoise.data.simulator import simulate_data
from brain_denoise.visualizers.time_series import plot_signals
import torch
import matplotlib.pyplot as plt
import numpy as np
from torch.nn import MSELoss
from brain_denoise.train import train_eval_model, run_epoch
from brain_denoise.utils import split_idx
# %%
# Params
ns, nc, nt = 1000, 3, 128
bs = 10
device = "cpu"
# Data
data_in, data_out, signal = simulate_data(
ns, nc, nt, noise_type=["gaussian", "step"]
)
# Build loader
dataset = TensorDataset(data_in, data_out)
testset = TensorDataset(data_in, signal)
train, valid, test = split_idx(len(dataset))
train_loader = DataLoader(dataset[train], batch_size=bs)
valid_loader = DataLoader(dataset[valid], batch_size=bs)
test_loader = DataLoader(testset[test], batch_size=bs)
# Initiate Model
model = UNet1D(
time_length=nt,
in_channels=nc,
hidden_channels=[16, 32]
)
model.to(device)
# Initiate Loss
loss = MSELoss()
# Intiate Optimizer
optimizer = torch.optim.Adam(
model.parameters(),
lr=1e-2,
weight_decay=1e-3
)
# Train
# %%
train_eval_model(
train_loader=train_loader,
model=model,
loss_fn=loss,
optimizer=optimizer,
n_epochs=100,
valid_loader=valid_loader,
test_loader=test_loader,
device="cpu"
)
final_loss = run_epoch(
dataloader=test_loader,
model=model,
loss_fn=loss,
device="cpu",
train=False,
optimizer=None,
n_epochs=100,
)
print(f"Final test loss : {final_loss:>3f}")
# %%
data_pred = model(data_in)
# %%
viz_idx = 2
plot_signals(
true_signal=signal[test][:viz_idx].detach().numpy(),
noisy_signal=data_in[test][:viz_idx].detach().numpy(),
pred_signal=data_pred[test][:viz_idx].detach().numpy()
)