-
Notifications
You must be signed in to change notification settings - Fork 2
/
openai_api_lby.py
165 lines (147 loc) · 5.78 KB
/
openai_api_lby.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List, Dict, Any
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import uvicorn
import json
import torch
from sse_starlette.sse import ServerSentEvent, EventSourceResponse
import logging
import sys
import uuid
# Constants
MODEL_DIR = "/home/glm-4-9b-chat-1m"
MAX_HISTORY = 21
MAX_LENGTH = 8192
TOP_P = 0.8
TEMPERATURE = 0.8
# Logger setup
def get_logger(name: str, file_name: str, use_formatter: bool = True) -> logging.Logger:
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter('%(asctime)s - %(message)s')
console_handler.setFormatter(formatter)
console_handler.setLevel(logging.INFO)
logger.addHandler(console_handler)
if file_name:
handler = logging.FileHandler(file_name, encoding='utf8')
handler.setLevel(logging.INFO)
if use_formatter:
formatter = logging.Formatter('%(asctime)s - %(name)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
logger = get_logger('ChatGLM', 'chatlog.log')
class ChatGLM:
def __init__(self, model_name: str = MODEL_DIR) -> None:
logger.info("Start initialize model...")
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
self.model = self._load_model(model_name)
self.model.eval()
logger.info("Model initialization finished.")
def _load_model(self, model_name: str):
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map='auto', quantization_config=BitsAndBytesConfig(load_in_4bit=True))
return model
def clear(self) -> None:
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def answer(self, query: str, history: List[tuple],max_length: int = 81920, top_p: float = 0.9, temperature: float = 0.95) -> (str, List[tuple]):
response, history = self.model.chat(self.tokenizer, query, history=history, max_length=max_length, top_p=top_p, temperature=temperature)
return response, [list(h) for h in history]
def stream(self, query: str, history: List[tuple], max_length: int = 81920, top_p: float = 0.9, temperature: float = 0.95):
size = 0
response = ""
for response, history in self.model.stream_chat(self.tokenizer, query, history, max_length=max_length, top_p=top_p, temperature=temperature):
this_response = response[size:]
size = len(response)
yield {
"model": "glm4",
"id": "chatcmpl-" + str(uuid.uuid4()),
"object": "chat.completion.chunk",
"choices": [
{
"delta": {
"role": "assistant",
"content": this_response,
"function_call": None
},
"finish_reason": "length",
"index": 0
}
]
}
bot = ChatGLM()
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/v1/chat/completions")
async def completions(arg_dict: Dict[str, Any]):
def decorate(generator):
for item in generator:
yield ServerSentEvent(json.dumps(item, ensure_ascii=False))
yield ServerSentEvent(data="[DONE]")
try:
print(arg_dict)
messages = arg_dict.get("messages", [])
text = messages[-1]["content"] if messages else ""
history = []
if len(messages)>1:
history = messages[:-1]
if len(history)>MAX_HISTORY:
history = messages[0]+history[-MAX_HISTORY:]
top_p = arg_dict.get("top_p",TOP_P)
temperature = arg_dict.get("temperature",TEMPERATURE)
max_length = arg_dict.get("max_tokens",MAX_LENGTH)
if max_length < 1024:
max_length = MAX_LENGTH
if temperature == 0:
temperature = 0.1
if arg_dict.get("stream", False):
return EventSourceResponse(decorate(bot.stream(text, history,top_p = top_p,temperature = temperature,max_length = max_length)))
else:
response, history = bot.answer(text, history)
return {
"model": "glm4",
"id": str(uuid.uuid4()),
"object": "chat.completion",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": response,
"function_call": None
},
"finish_reason": "length"
}
]
}
except Exception as e:
logger.error(f"error: {e}")
return {
"model": "glm4",
"id": str(uuid.uuid4()),
"object": "chat.completion",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "",
"function_call": None
},
"finish_reason": "length"
}
],
"msg": str(e)
}
if __name__ == '__main__':
uvicorn.run(app, host='0.0.0.0', port=8003, workers=1)