-
Notifications
You must be signed in to change notification settings - Fork 0
/
sortCar.py
149 lines (111 loc) · 4.03 KB
/
sortCar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np
import open3d as o3d
import math
from sklearn.linear_model import LinearRegression
import lineSegmentation as seg
pi = 3.141592653589793238
def get_angle(input_list):
angle = math.atan2(input_list[1], input_list[0])
return angle
def sort_Car(clusterCloud, z_max, z_min):
# Convert Numpy to Pointcloud
clusterCloud_pcd = o3d.geometry.PointCloud()
clusterCloud_pcd.points = o3d.utility.Vector3dVector(clusterCloud)
convexhull = clusterCloud[(clusterCloud_pcd.compute_convex_hull()[1])[:],:]
clusterCloud_2D = convexhull[:,0:2]
#points_x = clusterCloud_2D[:,0]
#points_y = clusterCloud_2D[:,1]
# Line Segmentation to extract two lines
tmp1 = seg.RansacLine(clusterCloud_2D, 140, 0.1)
if(tmp1 is not None):
inliers1_list, outliers1_list = tmp1
else:
return None, None
if(len(inliers1_list)==0 or len(outliers1_list)==0):
return None, None
line1_inliers = clusterCloud_2D[inliers1_list[:], :]
line1_outliers = clusterCloud_2D[outliers1_list[:], :]
if(len(line1_outliers)==0):
return None, None
tmp = seg.RansacLine(line1_outliers, 70, 0.2)
if(tmp is not None):
inliers2_list, _ = tmp
else:
return None, None
line2_inliers = line1_outliers[inliers2_list[:],:]
#######################################Linear Regression ###################
line_fitter1 = LinearRegression()
line_fitter2 = LinearRegression()
len1 = len(line1_inliers[:][:,0])
len2 = len(line2_inliers[:][:,0])
xline1 = line1_inliers[:][:,0].reshape(len1,1)
yline1 = line1_inliers[:][:,1].reshape(len1,1)
xline2 = line2_inliers[:][:,0].reshape(len2,1)
yline2 = line2_inliers[:][:,1].reshape(len2,1)
line1_fit = line_fitter1.fit(xline1,yline1)
line2_fit = line_fitter2.fit(xline2,yline2)
line1dy = line1_fit.coef_
#line1pred = line1_fit.predict(xline1).reshape([len1,1])
line2dy = line2_fit.coef_
#line2pred = line2_fit.predict(xline2).reshape([len2,1])
line1dict = {}
line2dict = {}
for i in range(0,len1):
line1dict[line1_inliers[i][0]] = line1_inliers[i][:]
for i in range(0,len2):
line2dict[line2_inliers[i][0]] = line2_inliers[i][:]
line1dict_sorted = sorted(line1dict.items())
line2dict_sorted = sorted(line2dict.items())
len1 = len(line1dict_sorted)
len2 = len(line2dict_sorted)
line1_sorted = np.empty([0,2])
line2_sorted = np.empty([0,2])
for j in range(0,len1):
line1_sorted = np.append(line1_sorted, [line1dict_sorted[j][1]],axis = 0)
for j in range(0, len2):
line2_sorted = np.append(line2_sorted, [line2dict_sorted[j][1]],axis = 0)
x1, y1 = line1_sorted[0][0], line1_sorted[0][1]
x2, y2 = line1_sorted[len1-1][0], line1_sorted[len1-1][1]
x3, y3 = line2_sorted[0][0], line2_sorted[0][1]
x4, y4 = line2_sorted[len2-1][0], line2_sorted[len2-1][1]
x1x3 = ((x1-x3)**2+(y1-y3)**2)**0.5
x2x3 = ((x2-x3)**2+(y2-y3)**2)**0.5
x1x4 = ((x1-x4)**2+(y1-y4)**2)**0.5
x2x4 = ((x2-x4)**2+(y2-y4)**2)**0.5
w = ((x3-x4)**2+(y3-y4)**2)**0.5
delx = x2-x1
dely = y2-y1
if(x2x3<x1x3):
if(x2x4<x2x3):
x4 = x3-delx
y4 = y3-dely
else:
x3 = x4-delx
y3 = y4-dely
else:
if(x1x4<x1x3):
x4 = x3+delx
y4 = y3+dely
else:
x3 = x4+delx
y3 = y4+dely
center = [(x1+x2+x3+x4)/4,(y1+y2+y3+y4)/4]
yaw = get_angle([1,line1dy])
l = (abs(x1-x2)**2+abs(y1-y2)**2)**0.5
h = z_max - z_min + 0.5
if(l<w):
temp = w
w = l
l = temp
yaw = get_angle([1,line2dy])
ang1 = get_angle([1, line1dy])*180/pi
ang2 = get_angle([1, line2dy])*180/pi
if(62<abs(ang1-ang2)<131.2):
if(w<2.8 and l<7.1):
return [center[0], center[1], yaw], [w, l,h]
else:
return None, None
else:
return None, None
if __name__ == "__main__":
print("Error.. Why sortCar Module execute")