forked from Devanik21/ISRO_Mining_Site_FINAL_APP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
65 lines (54 loc) · 2.82 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
st.set_page_config(page_title="Mining Site Visualization", page_icon="🔍")
def load_data():
# Load the dataset
data = pd.read_csv("space_mining_dataset.csv")
return data
def show_visualize_page():
st.title("Mining Site Visualization")
st.write("Explore different visualizations to understand the dataset and the impact of user preferences.")
data = load_data()
# Visualization 1: Distribution of Features
st.subheader("Distribution of Features")
feature = st.selectbox("Select Feature to Visualize", data.columns[1:]) # Exclude non-numeric columns if necessary
fig, ax = plt.subplots()
sns.histplot(data[feature], bins=20, kde=True, ax=ax)
ax.set_xlabel(feature)
st.pyplot(fig)
# Visualization 2: Pairplot of Selected Features
st.subheader("Pairplot of Selected Features")
features = st.multiselect("Select Features for Pairplot", data.columns[1:]) # Exclude non-numeric columns if necessary
if len(features) > 1:
fig, ax = plt.subplots()
sns.pairplot(data[features + ['final_score']], diag_kind='kde', hue='final_score')
st.pyplot(fig)
else:
st.write("Please select more than one feature.")
# Visualization 3: Impact of Weights on Recommendations
st.subheader("Impact of Weights on Recommendations")
st.write("Adjust the weights to see how the recommendations change.")
iron_weight = st.slider("Iron Weight", 0.0, 1.0, 0.3)
nickel_weight = st.slider("Nickel Weight", 0.0, 1.0, 0.2)
water_ice_weight = st.slider("Water Ice Weight", 0.0, 1.0, 0.2)
other_minerals_weight = st.slider("Other Minerals Weight", 0.0, 1.0, 0.1)
sustainability_weight = st.slider("Sustainability Weight", 0.0, 1.0, 0.1)
distance_weight = st.slider("Distance Weight", -1.0, 0.0, -0.1)
# Calculate and display adjusted scores
adjusted_scores = data.copy()
adjusted_scores['adjusted_score'] = (
iron_weight * adjusted_scores['iron'] +
nickel_weight * adjusted_scores['nickel'] +
water_ice_weight * adjusted_scores['water_ice'] +
other_minerals_weight * adjusted_scores['other_minerals'] +
sustainability_weight * adjusted_scores['sustainability_index'] +
distance_weight * adjusted_scores['distance_from_earth']
)
# Display top N sites based on adjusted scores
top_n = st.slider("Number of Top Sites to Display", 1, 10, 5)
top_sites = adjusted_scores.sort_values(by='adjusted_score', ascending=False).head(top_n)
st.subheader(f"Top {top_n} Sites Based on Adjusted Scores")
st.write(top_sites[['Celestial Body', 'iron', 'nickel', 'water_ice', 'distance_from_earth', 'adjusted_score']])
show_visualize_page()