You are given an array of non-overlapping axis-aligned rectangles rects
where rects[i] = [ai, bi, xi, yi]
indicates that (ai, bi)
is the bottom-left corner point of the ith
rectangle and (xi, yi)
is the top-right corner point of the ith
rectangle. Design an algorithm to pick a random integer point inside the space covered by one of the given rectangles. A point on the perimeter of a rectangle is included in the space covered by the rectangle.
Any integer point inside the space covered by one of the given rectangles should be equally likely to be returned.
Note that an integer point is a point that has integer coordinates.
Implement the Solution
class:
Solution(int[][] rects)
Initializes the object with the given rectanglesrects
.int[] pick()
Returns a random integer point[u, v]
inside the space covered by one of the given rectangles.
Input: ["Solution", "pick", "pick", "pick", "pick", "pick"] [[[[-2, -2, 1, 1], [2, 2, 4, 6]]], [], [], [], [], []] Output: [null, [1, -2], [1, -1], [-1, -2], [-2, -2], [0, 0]] Explanation: Solution solution = new Solution([[-2, -2, 1, 1], [2, 2, 4, 6]]); solution.pick(); // return [1, -2] solution.pick(); // return [1, -1] solution.pick(); // return [-1, -2] solution.pick(); // return [-2, -2] solution.pick(); // return [0, 0]
1 <= rects.length <= 100
rects[i].length == 4
-109 <= ai < xi <= 109
-109 <= bi < yi <= 109
xi - ai <= 2000
yi - bi <= 2000
- All the rectangles do not overlap.
- At most
104
calls will be made topick
.
import random
class Solution:
def __init__(self, rects: List[List[int]]):
self.rects = []
self.start = 0
for a, b, x, y in rects:
self.rects.append((self.start, a, b, x, y))
self.start += (x - a + 1) * (y - b + 1)
def pick(self) -> List[int]:
n = random.randint(0, self.start - 1)
i = bisect.bisect(self.rects, n, key=lambda r: r[0]) - 1
start, a, b, x, _ = self.rects[i]
n -= start
return [a + n % (x - a + 1), b + n // (x - a + 1)]
# Your Solution object will be instantiated and called as such:
# obj = Solution(rects)
# param_1 = obj.pick()