Given a circular integer array nums
of length n
, return the maximum possible sum of a non-empty subarray of nums
.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i]
is nums[(i + 1) % n]
and the previous element of nums[i]
is nums[(i - 1 + n) % n]
.
A subarray may only include each element of the fixed buffer nums
at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j]
, there does not exist i <= k1
, k2 <= j
with k1 % n == k2 % n
.
Input: nums = [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3.
Input: nums = [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
Input: nums = [-3,-2,-3] Output: -2 Explanation: Subarray [-2] has maximum sum -2.
n == nums.length
1 <= n <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
impl Solution {
pub fn max_subarray_sum_circular(nums: Vec<i32>) -> i32 {
let sum = nums.iter().sum();
let mut max_sum = nums[0];
let mut min_sum = nums[0];
let mut prefix_sum = nums[0];
let mut ret = nums[0].max(sum);
for i in 1..nums.len() {
prefix_sum += nums[i];
ret = ret
.max(prefix_sum - min_sum)
.max(sum - prefix_sum + max_sum);
max_sum = max_sum.max(prefix_sum);
min_sum = min_sum.min(prefix_sum);
}
ret
}
}