Skip to content

Latest commit

 

History

History
59 lines (50 loc) · 1.89 KB

File metadata and controls

59 lines (50 loc) · 1.89 KB

2293. Min Max Game

You are given a 0-indexed integer array nums whose length is a power of 2.

Apply the following algorithm on nums:

  1. Let n be the length of nums. If n == 1, end the process. Otherwise, create a new 0-indexed integer array newNums of length n / 2.
  2. For every even index i where 0 <= i < n / 2, assign the value of newNums[i] as min(nums[2 * i], nums[2 * i + 1]).
  3. For every odd index i where 0 <= i < n / 2, assign the value of newNums[i] as max(nums[2 * i], nums[2 * i + 1]).
  4. Replace the array nums with newNums.
  5. Repeat the entire process starting from step 1.

Return the last number that remains in nums after applying the algorithm.

Example 1:

Input: nums = [1,3,5,2,4,8,2,2]
Output: 1
Explanation: The following arrays are the results of applying the algorithm repeatedly.
First: nums = [1,5,4,2]
Second: nums = [1,4]
Third: nums = [1]
1 is the last remaining number, so we return 1.

Example 2:

Input: nums = [3]
Output: 3
Explanation: 3 is already the last remaining number, so we return 3.

Constraints:

  • 1 <= nums.length <= 1024
  • 1 <= nums[i] <= 109
  • nums.length is a power of 2.

Solutions (Rust)

1. Solution

impl Solution {
    pub fn min_max_game(nums: Vec<i32>) -> i32 {
        let mut nums = nums;
        let mut n = nums.len();

        while n > 1 {
            n /= 2;
            nums = (0..n)
                .map(|i| match i % 2 {
                    0 => nums[2 * i].min(nums[2 * i + 1]),
                    _ => nums[2 * i].max(nums[2 * i + 1]),
                })
                .collect();
        }

        nums[0]
    }
}