-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththesis.latex
6174 lines (5581 loc) · 327 KB
/
thesis.latex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%-------------------------------------
%
% Dissertation
%
%-------------------------------------
\documentclass[a4paper,twoside,12pt,openright]{book}
\usepackage[lmargin=142pt,rmargin=95pt,tmargin=127pt,bmargin=123pt]{geometry}
%---- packages ----
\usepackage[hyphens]{url}
\usepackage[margin=10pt,font=small,labelfont=bf]{caption}
% fancy page layout
\usepackage{fancyhdr}
% toc formating
\usepackage{tocbibind}
\usepackage[titles]{tocloft}
\renewcommand{\cftchapfont}{%
\fontsize{11}{13}\usefont{OT1}{phv}{bx}{n}\selectfont
}
% language
\usepackage[shorthands=true,ngerman,english]{babel} % use babel because polyglossia gives errors
\usepackage{csquotes}
% ams-latex
\usepackage{amssymb}
\usepackage{amsmath}
% graphics
%\usepackage[usenames,dvipsnames]{color}
% tables
\usepackage{longtable}
%\usepackage[table]{xcolor}
\usepackage{tabularx}
\usepackage{multirow}
\usepackage{booktabs}
\usepackage{arydshln}
\usepackage{lscape}
\usepackage{array}
\usepackage{subscript}
\usepackage{booktabs}
% links
\usepackage{pdflscape}
\usepackage{tabu}
% formating of urls
\usepackage{url}
% chapter headers
\usepackage[Sonny]{fncychap}
\ChNameVar{\large\sf}
\ChNumVar{\huge}
\ChTitleVar{\Huge\sf}
\ChRuleWidth{0.5pt}
\ChNameUpperCase
\usepackage{emptypage} % remove header on empty pages
% line spacing
\usepackage{setspace}
% abbreviations
\usepackage[intoc]{nomencl}
\renewcommand{\nomname}{List of Abbreviations}
\setlength{\nomitemsep}{-\parsep}
\makenomenclature
% run additionally: makeindex main.nlo -s nomencl.ist -o main.nls
% 4 markers used: 1_v (virus), 2_s (viral strains), 3_m (methodology), 4_o (others)
% additionally structure the computed tex file into sections manually
% include whole pdfs
\usepackage{pdfpages}
\usepackage{textcomp}
%---- page layout ----
\setlength{\paperheight}{297mm}
\setlength{\paperwidth}{210mm}
\setlength{\hoffset}{0.00cm}
\setlength{\voffset}{0.00cm}
\setlength{\oddsidemargin}{1.5cm}
\setlength{\evensidemargin}{0cm}
\setlength{\topmargin}{1mm}
\setlength{\headheight}{1.36cm}
\setlength{\headsep}{1.00cm}
\setlength{\textheight}{20.84cm}
\setlength{\textwidth}{14.5cm}
\setlength{\marginparsep}{1mm}
\setlength{\marginparwidth}{3cm}
\setlength{\footskip}{2.36cm}
%---- fancy page layout ----
\pagestyle{fancy}
\renewcommand{\chaptermark}[1]{\markboth{\MakeUppercase{Chapter \thechapter. #1 }}{}}
\renewcommand{\sectionmark}[1]{\markright{\thesection\ #1}}
\fancyhf{}
\fancyhead[RO]{\rightmark \hspace{0.5cm} \textbf{\thepage}}
\fancyhead[LE]{\textbf{\thepage} \hspace{0.5cm} \leftmark}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}
\addtolength{\headheight}{0.5pt}
\fancypagestyle{plain}{
\fancyhead{}
\renewcommand{\headrulewidth}{0pt}
}
%---- references ----
%\renewcommand{\refname}{References}
%\renewcommand{\bibname}{References}
%---- own command definitions ----
%\input{config/definitions.own}
% turn of those nasty overfull and underfull hboxes and vboxes
\hbadness=10000
\hfuzz=1pt
\vbadness=10000
\vfuzz=1pt
% control pdf output settings
%\pdfminorversion=4 # PDF 1.4 is basis for PDF/A 1b
%\pdfobjcompresslevel=0 # not allowed in PDF/A 1b
%\pdfcompresslevel=0 # supress LZW stream compression for PDF/A 1b
\usepackage{glossaries}
%\input{content/glossary.tex}
\makeglossary
\usepackage{subcaption}
\usepackage{footnote}
% control hyphenation in titles
\usepackage[raggedright]{titlesec}
% add appendix
\usepackage[toc,page]{appendix}
% set paragraph spacing
%\usepackage{parskip}
\usepackage[iso]{datetime}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{amssymb,amsmath}
\usepackage{bm}
\usepackage{ifxetex,ifluatex}
\usepackage{fixltx2e} % provides \textsubscript
% use upquote if available, for straight quotes in verbatim environments
\IfFileExists{upquote.sty}{\usepackage{upquote}}{}
\ifnum 0\ifxetex 1\fi\ifluatex 1\fi=0 % if pdftex
\usepackage[utf8]{inputenc}
\else % if luatex or xelatex
\ifxetex
\usepackage{mathspec}
\usepackage{xltxtra,xunicode}
\else
\usepackage{fontspec}
\fi
\defaultfontfeatures{Mapping=tex-text,Scale=MatchLowercase}
\newcommand{\euro}{€}
\fi
% use microtype if available
\IfFileExists{microtype.sty}{\usepackage{microtype}}{}
\usepackage{longtable,booktabs}
% pandoc if(graphics) deactivated because set by pandoc for some reason
\usepackage[export]{adjustbox} % loads graphicx but we can define padding around figures
\let\Oldincludegraphics\includegraphics
{%
\catcode`\@=11\relax%
\gdef\includegraphics{\@ifnextchar[{\Oldincludegraphics}{\Oldincludegraphics[padding=15 15 15 15,max width=\linewidth]}}%
}%
\ifxetex
\usepackage[setpagesize=false, % page size defined by xetex
unicode=false, % unicode breaks when used with xetex
xetex,
pdfa]{hyperref}
\else
\usepackage[unicode=true,pdfa]{hyperref}
\fi
\hypersetup{breaklinks=true,
bookmarks=true,
bookmarksdepth=3,
pdfauthor={},
pdftitle={},
colorlinks=true,
citecolor=black,
urlcolor=black,
linkcolor=black,
pdfborder={0 0 0}}
\urlstyle{same} % don't use monospace font for urls
\setlength{\parindent}{0pt}
\setlength{\parskip}{6pt plus 2pt minus 1pt}
\setlength{\emergencystretch}{3em} % prevent overfull lines
\setcounter{secnumdepth}{0}
%redefine figure placement rules
\usepackage{float}
\let\origfigure=\figure
\let\endorigfigure=\endfigure
\renewenvironment{figure}[1][2]{%
%\expandafter\origfigure\expandafter[H]
\expandafter\origfigure\expandafter[!htb] % use H for direct placement
}{%
\endorigfigure
}
% place figures and tables in the same sections/subsections
\usepackage{placeins}
\let\origsection=\section
\let\endorigsection=\endsection
\renewenvironment{section}[1][]{%
\origsection
}{%
\endorigsection
\FloatBarrier
}
\let\origsubsection=\subsection
\let\endorigsubsection=\endsubsection
\renewenvironment{subsection}[1][]{%
\origsubsection
}{%
\endorigsubsection
\FloatBarrier
}
\let\origsubsubsection=\subsubsection
\let\endorigsubsubsection=\endsubsubsection
\renewenvironment{subsubsection}[1][]{%
\origsubsubsection
}{%
\endorigsubsubsection
\FloatBarrier
}
\let\origparagraph=\paragraph
\let\endorigparagraph=\endparagraph
\renewenvironment{paragraph}[1][]{%
\origparagraph
}{%
\endorigparagraph
\FloatBarrier
}
\let\origsubparagraph=\subparagraph
\let\endorigsubparagraph=\endsubparagraph
\renewenvironment{subparagraph}[1][]{%
\origsubparagraph
}{%
\endorigsubparagraph
\FloatBarrier
}
% define tightlist
\providecommand{\tightlist}{%
\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
% bold title used in abstract
\newcommand{\smhd}[1]{{\Large\bf\usefont{OT1}{phv}{b}{n}\selectfont #1}}
\begin{document}
\begin{titlepage}
\newgeometry{top=100pt,bottom=100pt,right=35pt,left=55pt}
\thispagestyle{empty}
\vspace*{\fill}
\includegraphics[width=\textwidth]{cover/coverimage.pdf}
\vspace*{\fill}
\newpage
\restoregeometry
\thispagestyle{empty}
%\begin{center}
\small{
\input{cover/description.latex}
}
%\end{center}
\end{titlepage}
\restoregeometry
\frontmatter
\setlength{\parindent}{0pt}
\renewcommand{\baselinestretch}{1.00}\normalsize
%-------------------------------------
% Title page
%-------------------------------------
\pagestyle{empty}
%\vspace*{0.3cm}
\begin{center}
\huge{
Computational Methods\\
for Taxonomic Annotation\\
and Genome Reconstruction\\
in Metagenomics
\par
}
\onehalfspacing
\vspace*{2.5cm}
\large
Kumulative Dissertation
\vspace*{1.5cm}
zur\\
Erlangung des Doktorgrades\\
der Mathematisch-Naturwissenschaftlichen Fakultät \\
der Heinrich-Heine-Universität Düsseldorf \\
\vspace*{1.0cm}
vorgelegt von\\
\vspace*{0.5cm}
\textbf{Johannes Dröge}\\
aus Halle (Westf.)
\vspace*{3cm}
Düsseldorf, 2017-03-31
\end{center}
\newpage
aus dem Institut für Informatik\\
der Heinrich-Heine-Universität Düsseldorf
\vspace*{10cm}
Gedruckt mit der Genehmigung der\\
Mathemathisch-Naturwissenschaftlichen Fakultät der\\
Heinrich-Heine-Universität Düsseldorf
\vspace*{3cm}
\begin{tabularx}{\textwidth}{ X X }
Referent: & Prof. Dr. Alice C. McHardy \\
Koreferent: & Prof. Dr. Martin J. Lercher\\
& \\
Tag der mündlichen Prüfung: & 2017-07-17 \\
\end{tabularx}
%-------------------------------------
% Selbstaendigkeitserklaerung
%-------------------------------------
\newpage
\pagestyle{plain}
% \vspace*{2cm}
{
\selectlanguage{ngerman}
\smhd{Selbstst{\"a}ndigkeitserkl{\"a}rung} % stupid command cannot take utf8
\vspace*{1cm} {\parindent=0pt
Hiermit erkläre ich, dass ich die vorliegende Dissertation eigenständig und ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ähnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche unternommen.
\vspace{1cm}
Düsseldorf , den ~ \makebox[3cm]{\dotfill} \hfill\hfill\hfill \makebox[5cm]{\dotfill}
\\
\small\rule{0pt}{0pt} \hfill(Johannes Dröge)
}
}
\vspace*{8cm}
\smhd{Statement of authorship}
\vspace*{1cm} {\parindent=0pt
I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure.}
\cleardoublepage
%-------------------------------------
% Abstract English
%-------------------------------------
\smhd{Summary}
\vspace*{0.5cm}
\onehalfspacing
Microbial communities can be found in almost every place, from biogas
reactors over deep sea vents, the surface of plant leaves and roots, to
the human body, which hosts a plethora of foreign cells in its digestion
system. These communities may consist of thousands upon thousands of
microorganisms, including bacteria, archaea, algae and fungi, which
coexist within their habitats but which cannot simply be cultivated and
studied due to their complex mutual dependencies and environmental
requirements. Metagenomics is a field dedicated to the genetic analysis
of such communities. The genes of their members enable their survival,
for instance by making nutrients accessible, by neutralizing toxic
compounds or by allowing symbiosis with other organisms. Through the use
of nucleotide sequencing technologies, this genetic diversity can be
explored and rendered usable, for instance in the form of new
antibiotics or as enzymes in biotechnology. Apart from its considerable
economic potential, metagenomic approaches lead to a fundamentally
improved understanding of the microbial processes on earth.\\
With current technology, it is not directly possible to sequence
contiguous genomes from microbial communities. Instead, short sequences,
called reads, are produced, which need to be assembled into genes and
longer genome sequences using computer programs. Depending on the size
and complexity of the metagenome, this task can be very difficult. This
thesis describes two methods for assigning metagenomic sequences to
taxonomic groups or genomes. The results can be used to analyze the
genes, and the corresponding proteins and functions, within their
phylogenetic and genetic context to gain better insight into the
functioning of individual organisms and the microbial community.\\
Our first method, \emph{taxator-tk}, assigns nucleotide sequences from
metagenomes to corresponding taxa and approaches two challenges: the
precise prediction of taxa and the application to datasets, which are
constantly growing due to the rapid progress in DNA sequencing. Since
annotation methods such as \emph{taxator-tk}, which require similarity
to known genomes, spend a considerable part of their runtime for
sequence comparison, our algorithm exploits the underlying phylogenetic
structure for similar gene sequences to efficiently calculate the
taxonomic assignment. The same phylogenetic principles are used to
achieve a high assignment precision.\\
The second method in this thesis helps researchers to reconstruct
individual genomes. It is a statistical classification model for
metagenome data, for which we outline several direct and follow-up
applications. These include classification of nucleotide sequences to
individual genomes, \emph{de-novo} calculation of genome clusters in
metagenomes, \emph{in-silico} sample enrichment for genomes and quality
checking of reconstructed genomes. We published the method as a software
library named \emph{MGLEX} for integration into other programs to enable
the efficient use of the data for reconstructing genomes in different
scenarios.\\
Presumably, metagenomics will continue to play an important role in
microbial research, and may partially obviate the sequencing of cloned
strain genomes. This trend is supported by the rapid development of DNA
sequencing technologies, which is progressing towards faster sequencing
and longer reads. The presented methods supplement the existing set of
bioinformatics tools for acquiring knowledge from metagenomes. By
reducing metagenomes to individual genomes, one can apply traditional
algorithms from genomics, for instance to reconstruct metabolic
pathways, and one can link data from transcriptomic and proteomic
experiments. Therefore, there is much interest in genome reconstruction
methods, like the ones presented in this thesis.
\newpage
%-------------------------------------
% Abstract German
%-------------------------------------
\cleardoublepage
{
\selectlanguage{ngerman}
\smhd{Zusammenfassung}
\vspace*{0.5cm}
\frenchspacing
Mikrobielle Gemeinschaften existieren praktisch überall, in
Biogas-Anlagen, heißen Quellen am Meeresgrund, auf der Oberfläche von
Pflanzenblättern und -wurzeln und auch im menschlichen Körper, welcher
z.~B. im Verdauungstrakt an genetisch fremden Zellen ein Vielfaches
seiner selbst beherbergt. Sie können aus Abertausenden von
Mikroorganismen, wie Bakterien, Archäen, Algen und Pilzen, bestehen, die
innerhalb ihrer Umgebung koexistieren und auf Grund ihrer komplexen
wechselseitigen Abhängigkeiten und speziellen Umgebungsanforderungen
nicht ohne Weiteres isoliert, kultiviert und untersucht werden können.
Das Feld der Metagenomik widmet sich der genetischen Analyse dieser
Gemeinschaften. Die Gene ihrer Mitglieder sichern ihnen das Überleben,
indem sie unter anderem Nahrung verwertbar machen, Gifte neutralisieren
oder Symbiosen mit anderen Organismen ermöglichen. Durch die Technik der
Gensequenzierung kann man diesen genetischen Reichtum untersuchen und
für Anwendungen nutzbar machen, z.~B. in Form von neuen Antibiotika oder
als Enzyme in der Biotechnologie. Abgesehen von dem großen ökonomischen
Potential ermöglicht die Metagenomik ein fundamental besseres
Verständnis der mikrobiologischen Prozesse auf unserer Erde.\\
Auf direktem Weg können nach heutigem technischen Stand noch keine
zusammenhängenden Genome der mikrobiellen Gemeinschaften sequenziert
werden. Vielmehr ergeben sich viele kurze DNA-Abschnitte, sogenannte
Reads, die durch Computerprogramme zu Gen- und längeren Genom-Sequenzen
zusammengesetzt werden müssen, was sich je nach Größe und Komplexität
des Metagenoms als sehr schwierig erweisen kann. Diese Doktorarbeit
beschreibt zwei Methoden, die das Ziel verfolgen, metagenomische
Sequenzen bestimmten taxonomischen Gruppen oder Genomen zuzuordnen.
Dadurch können die Gene bzw. ihre zugehörigen Proteine und Funktionen im
phylogenetischen und genetischen Kontextes analysieren werden, um so ein
besseres Verständnis der Funktionsweise der Organismen und der
mikrobiellen Gemeinschaft zu erlangen.\\
Das erste Methode, \emph{taxator-tk}, weist Nukleotidsequenzen aus
Metagenomen bestimmten Taxa zu und begegnet dabei zwei
Herausforderungen: zum einen der präzisen Vorhersage und zum anderen der
Anwendbarkeit auf Datensätzen, deren Größe mit dem rapiden Fortschritt
der DNA-Sequenzierung stetig ansteigt. Annotationsmethoden wie
\emph{taxator-tk}, die auf Ähnlichkeit zu bereits bekannten Genomen
setzen, benötigen einen beträchtlichen Teil ihrer Laufzeit für die
Berechnung der Sequenzähnlichkeiten. Daher nutzt unser Algorithmus die
zugrunde liegende phylogenetische Struktur ähnlicher Gensequenzen zur
effizienten Berechnung einer taxonomischen Vorhersage. Durch die
Anwendung der gleichen phylogenetischen Prinzipien erreicht er eine hohe
Präzision der Vorhersagen.\\
Die zweite in dieser Arbeit vorgestellte Methode unterstützt Forscher
bei der Rekonstruktion einzelner Genome. Es handelt sich um ein
statistisches Klassifikationsmodell für Metagenomdaten, für das
zahlreiche direkte und weitergehende Anwendungsmöglichkeiten skizziert
werden. Diese umfassen die Klassifizierung von Nukleotidsequenzen nach
Genomen, die \emph{de-novo}-Berechnung von Genom-Clustern, die
\emph{in-silico} Anreicherung von Genomsequenzdaten und die
Qualitätskontrolle rekonstruierter Genome. Die Methode wurde als
Software-Bibliothek namens \emph{MGLEX} zur Verwendung in anderen
Programmen veröffentlicht und ermöglicht dadurch eine effiziente
Datenverwertung bei der Rekonstruktion von Genomen in unterschiedlichen
Situationen.\\
Es ist zu erwarten, dass die Metagenomik eine wichtige Rolle in der
mikrobiologischen Forschung spielen und zunehmend in Konkurrenz zur
Genomsequenzierung geklonter Stämme treten wird. Diese Prognose wird
auch durch die rasante Entwicklung der DNA-Sequenziertechniken getragen,
die eine immer schnellere Sequenzierung immer längerer Reads
ermöglichen. Die hier vorgestellten Methoden ergänzen das Repertoire
vorhandener Bioinformatik-Werkzeuge zur Gewinnung von Erkenntnissen aus
Metagenomen. Die Reduzierung von Metagenomen auf einzelne Genome
ermöglicht sowohl die Anwendung klassischer Algorithmen der Genomik, z.
B. zur Rekonstruktion von Stoffwechselpfaden, als auch die Verknüpfung
mit experimentellen Daten der Transkriptomik und Proteomik. Daher sind
Verfahren zur Rekonstruktion einzelner Genome, wie sie in dieser Arbeit
vorgestellt werden, von großem generellem Interesse.
}
\vspace*{0.5cm}
\newpage
%-------------------------------------
% Acknoledgements German
%-------------------------------------
%\cleardoublepage
{
\selectlanguage{ngerman}
\smhd{Danksagung}
\vspace*{0.5cm}
\frenchspacing
Zahlreiche Personen haben mich im Verlauf meiner Promotion begleitet und
unterstützt. Ihnen gebührt mein vollster Dank, auch wenn ich an dieser
Stelle nicht alle erwähnen kann. Ohne die Hilfe, die wissenschaftliche
Expertise und die Ideen von Alice McHardy wäre diese Arbeit nicht
möglich gewesen. Außerdem bedanke ich mich bei meinen beiden Koautoren
Alexander Schönhuth und Ivan Gregor, die mich in der Konzeption und
Ausführung meiner Publikationen unterstützt haben. Unersetzlich war für
mich über die gesamte Zeit meiner Promotion auch die Unterstützung durch
meine Freundin Diana Rodriguez und meine Familie. Durch die gemeinsame
Arbeit in unserer Forschungsgruppe habe ich mich immer bestärkt gefühlt,
wofür ich mich bei meinen zahlreichen Kollegen bedanke. Hervorheben will
ich Aaron Weimann und David Lähnemann für die vielen fachlichen
Diskussionen, die gemeinsamen Erlebnisse und ihren fortwährenden Einsatz
für ein gutes Betriebsklima. Für ihre andauernde Hilfe in
organisatorischen Angelegenheiten und ihre wohlwollende Art möchte ich
mich zuletzt auch bei Angela Rennwanz bedanken.
}
\vspace*{0.5cm}
\newpage
%\selectlanguage{english}
%-------------------------------------
% Table of content
%-------------------------------------
%---- fancy page layout ----
\pagestyle{fancy}
\renewcommand{\chaptermark}[1]{\markboth{\MakeUppercase{Chapter \thechapter. #1 }}{}}
\renewcommand{\sectionmark}[1]{\markright{\thesection\ #1}}
\fancyhf{}
\fancyhead[RO]{\rightmark \hspace{0.5cm} \textbf{\thepage}}
\fancyhead[LE]{\textbf{\thepage} \hspace{0.5cm} \leftmark}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}
\addtolength{\headheight}{0.5pt}
\fancypagestyle{plain}{
\fancyhead{}
\renewcommand{\headrulewidth}{0pt}
}
{
%---- table of contents ----
%\cleardoublepage
\setcounter{secnumdepth}{2}
\setcounter{tocdepth}{2}
\tableofcontents
%---- figure index ----
%\cleardoublepage
\renewcommand\listfigurename{List of Figures} % title can be changed here
\listoffigures
%---- list index ----
%\cleardoublepage
\renewcommand\listtablename{List of Tables} % title can be changed here
\listoftables
\cleardoublepage
\markboth{\MakeUppercase{\nomname}}{\nomname}
%define acronyms
%\glsaddall
%\hypersetup{linkcolor=black}
%\setcounter{tocdepth}{2}
%\tableofcontents
}
\mainmatter
\onehalfspacing
\chapter{Synopsis}\label{synopsis}
\section{Metagenomics}\label{metagenomics}
Metagenomics is a more recent variant of genomics which pursues medical
or ecological questions at the scale of microbial communities using
nucleotide sequencing. In contrast to microbial genomics, which is
focused on single strains traditionally grown in lab cultures before
genome sequencing, the metagenomic approach applies direct sampling from
a natural ecosystem without cultivation. Microbes form so-called
communities in their micro-environment because they interact, for
instance by symbiosis (e.g.~sharing metabolites) or competition
(e.g.~for food). Such a community may consist of hundreds or thousands
of different species, which are connected by complex interactions (Berry
\& Widder, \protect\hyperlink{ref-BerryDeciphering2014}{2014}; Fuhrman,
Cram \& Needham, \protect\hyperlink{ref-FuhrmanMarine2015}{2015}). It is
the principal interest of microbial ecology to understand these
interaction networks, which make it difficult to isolate and grow the
organisms on culture medium because the specific cultivation conditions
cannot be reproduced (Riesenfeld, Schloss \& Handelsman,
\protect\hyperlink{ref-RiesenfeldMetagenomics2004}{2004}; Stewart,
\protect\hyperlink{ref-StewartGrowing2012}{2012}). However, by
extracting and sequencing environmental DNA directly after sampling, one
can capture the genomes of all community members, although in a highly
fractional and usually incomplete form. One could say that current
metagenomics trades the species-level resolution and the completeness of
very few genomes for a higher level view on the genes in a community.
The metagenome, a term coined in the early 2000 (Rondon et al.,
\protect\hyperlink{ref-RondonCloning2000}{2000}; Riesenfeld, Schloss \&
Handelsman, \protect\hyperlink{ref-RiesenfeldMetagenomics2004}{2004};
Tyson et al., \protect\hyperlink{ref-TysonCommunity2004}{2004}), stands
for all the genes in a microbial community. These genes determine the
ecological functions of the community members through the proteins they
encode. Metagenome sequencing can thus collect new environmental genes
and discover protein functions with potential use in medicine and
biotechnology, and provides a way to understand the microbial
interactions within diverse ecosystems. It has been used to study many
different environments (Figure~\ref{fig:metagenomes_environments}).
\begin{figure}[htbp]
\centering
\includegraphics{figure/metagenome_title_clusters.pdf}
\caption[Microbial environments extracted from 8211 publication titles]{Microbial environments extracted from 10,043 publication titles (2011-2017) positioned by cooccurence in publication titles. The articles were selected by topic and the corresponding metadata downloaded from Europe PMC (europepmc.org). The titles were then reduced to environment-related words and these were grouped by the number of cooccurences using Gephi (gephi.org) with a force-directed layout and subsequent annotation of clusters. Three major clusters emerge, relating to aquatic environments, soil and plant biomass degradation and (human) host-related environments.}\label{fig:metagenomes_environments}
\end{figure}
Early metagenomic studies have impressively demonstrated the potential
of this new approach. For instance, new antibiotics and antibiotic
resistance genes were identified (Gillespie et al.,
\protect\hyperlink{ref-GillespieIsolation2002}{2002}; Riesenfeld,
Goodman \& Handelsman,
\protect\hyperlink{ref-RiesenfeldUncultured2004}{2004}). An ocean survey
(Venter et al., \protect\hyperlink{ref-VenterEnvironmental2004}{2004})
revealed hundreds of new rhodopsin-like genes in seawater environments
(rhodopsin is an essential protein to sensing light) among over 1.2
million novel genes. In the following, numerous micro-environments were
explored to provide a census of genes and species, many of them
previously unknown. For the various sites in and on the human body,
which represent well-studied environments due to medical applications,
the resulting data provided new insight into the interactions between
the human host and its so-called microbiome. For instance abnormal
microbial colonization of the gut was observed with chronic inflammation
(Qin et al., \protect\hyperlink{ref-QinHuman2010}{2010}). Although most
investigations have focused on the bacteria, the best known domain in
the microbial tree of life, metagenomics has also been used to study the
genes of archaea, microscopic eukaryotes, viruses and genetic elements
like plasmids (Hugenholtz \& Tyson,
\protect\hyperlink{ref-HugenholtzMicrobiology2008}{2008}; Cuvelier et
al., \protect\hyperlink{ref-CuvelierTargeted2010}{2010}; Garrett et al.,
\protect\hyperlink{ref-GarrettMetagenomic2010}{2010}), which helped to
broaden the view on the global genetic repertoire of life and its
evolution.
\subsection{DNA sequencing}\label{dna-sequencing}
Past and present progress in the field of metagenomics is tightly
coupled to the development of next-generation sequencing technologies
(NGS). While earlier studies were based on the Sanger sequencing
technology (Wommack, Bhavsar \& Ravel,
\protect\hyperlink{ref-WommackMetagenomics2008}{2008}), the underlying
chemistry has been subject to many improvements, such as the engineering
of highly parallel reaction and detection procedures. This has led to an
considerable drop in overall time and cost of nucleotide sequencing
(Dröge \& McHardy, \protect\hyperlink{ref-DrogeTaxonomic2012}{2012}).
The first sequencing approaches in metagenomics targeted well studied
single genes, predominantly the bacterial and archaeal gene of the
ribosomal 16S subunit (Quince, Curtis \& Sloan,
\protect\hyperlink{ref-QuinceRational2008}{2008}; Hamady \& Knight,
\protect\hyperlink{ref-HamadyMicrobial2009}{2009}), which is a good
taxonmic marker because it contains both conserved and divergent
regions. In this context, sequences identity thresholds were applied to
define operational taxonomic units (OTUs) as an approximate species
replacement. The variable regions were amplified in a polymerase chain
reaction (PCR) before sequencing and are therefore called amplicons.
Using this selective approach reduced the amount of target DNA from
millions of bases per genome to a few hundreds while giving estimates of
genetic species diversity. Amplicon sequencing is still in use and
represents a cost-effective way to study the taxonomic composition and
taxon abundances. However, it cannot be used to discover the functional
potential unless the corresponding genome sequences are available for
consideration. To target novel community genomes, universal sequencing
primers initiate sequencing at random starting positions on the DNA
strands. This approach is called shotgun sequencing due to the fact that
the reads are more or less randomly scattered over the entire genome
sequence. With a sufficient number of reads, metagenomic shotgun
sequencing can cover most genes and continues to evolve together with
next-generation sequencing platforms, but also with respect to
experimental protocols and data analysis methods. A major limitation of
current sequencing technologies is the length of the primary sequencing
products (reads). In particular, the currently dominating Illumina
sequencing platform produces reads which are still much shorter than
typical genes (Dröge \& McHardy,
\protect\hyperlink{ref-DrogeTaxonomic2012}{2012}) so that overlapping
reads are typically assembled to form longer contiguous sequences
(contigs) (Miller, Koren \& Sutton,
\protect\hyperlink{ref-MillerAssembly2010}{2010}). New technologies such
as PacBio and Oxford Nanopore sequencing yield longer reads but have
larger error rates and higher costs compared to Illumina, which limits
their current use in metagenomics (Goodwin, McPherson \& McCombie,
\protect\hyperlink{ref-GoodwinComing2016}{2016}).
Metagenomic studies have highlighted the advantages of metagenomic over
the traditional sequencing approach using isolated and cultured strains.
The genomes of environmental microorganisms were found to be much more
genetically diverse than those of corresponding lab strains (Tyson et
al., \protect\hyperlink{ref-TysonCommunity2004}{2004}; Handelsman,
\protect\hyperlink{ref-HandelsmanMetagenomics2004}{2004}), which
essentially represent clones of a single cell. Researchers also become
more aware of the fact that genetic data collections are strongly biased
towards taxa which are easily grown in lab cultures and which are of
medical relevance, leaving many black spots in the microbial tree of
life (Tyson et al., \protect\hyperlink{ref-TysonCommunity2004}{2004}; Wu
et al., \protect\hyperlink{ref-WuPhylogenydriven2009}{2009}). Using the
exploratory metagenomics approach, there is no need to narrow the focus
on certain species and to hypothesize about the role of these organisms
in their environment beforehand. The bird's eye view on the genes helps
to identify mutual dependencies, such as pathways that are connected
between different genomes (Ponomarova \& Patil,
\protect\hyperlink{ref-PonomarovaMetabolic2015}{2015}), and to associate
new functions and new species. Apart from this, direct sequencing also
creates new problems. Some sequencing platforms introduce a bias related
to the nucleotide composition (Dohm et al.,
\protect\hyperlink{ref-DohmSubstantial2008}{2008}), which may affect the
analysis. In general, it is difficult to distinguish sequencing errors
from natural genetic variation, which, in some cases, could lead to
wrong conclusions such as inflated microbial diversity estimates (Quince
et al., \protect\hyperlink{ref-QuinceAccurate2009}{2009}; Kunin et al.,
\protect\hyperlink{ref-KuninWrinkles2010}{2010}). Another problem with
this sequence heterogeneity is that longer genome sequences often fail
to assemble due to the natural and artificial nucleotide variations in
the reads (Melsted \& Pritchard,
\protect\hyperlink{ref-MelstedEfficient2011}{2011}; Pell et al.,
\protect\hyperlink{ref-PellScaling2012a}{2012}). Typical metagenome data
therefore contain many incomplete genes whose origin and functional role
needs to be determined.
\subsection{The role of computer
programs}\label{the-role-of-computer-programs}
Today's genomic data are ubiquitous and abundant due to high-throughput
nucleotide sequencing. Consequently, the data generation marks a
starting point of knowledge discovery, making modern metagenomics in
large part a data-driven science in which algorithms have replaced lab
techniques to sort and analyze genetic material. Metagenome data are
large (because they represent many genomes) and require extensive
processing to deal with the phylogenetic and genetic diversity in the
sample. It is convenient to divide the downstream processing of raw
sequencing data into three consecutive steps which are illustrated in
Figure~\ref{fig:metagenome_processing_steps}: (a) sequence processing
specific to the sequencing platform and often performed by proprietary
software; (b) metagenome analysis and reduction to non-redundant draft
genome sequences; (c) algorithms to study the individual genomes and how
they interact. Step (a) applies not only to metagenomics but to all
sciences using nucleotide sequencing and, from a practical perspective,
decouples downstream algorithms from the specifics of sequencing
technology and its development. The work presented in this thesis
contributes to step (b), to prepare the data for use in downstream
algorithms in step (c), which are tailored to the biological questions.
\begin{figure}[htbp]
\centering
\includegraphics{figure/metagenome_processing_steps.pdf}
\caption[Major steps in metagenome data processing]{Major steps in metagenome data processing. Typical processing consists of three consecutive levels: (a) read processing (b) contig analysis and binning and (c) the analysis at the genome level.}\label{fig:metagenome_processing_steps}
\end{figure}
An important step following nucleotide sequencing is the assembly of
overlapping reads into longer contigs. For this, many reads must be
sequenced to cover the corresponding genome positions. In current
Illumina sequencing protocols, pairs of reads are typically linked in
the experimental library preparation (Goodwin, McPherson \& McCombie,
\protect\hyperlink{ref-GoodwinComing2016}{2016}) to capture their
relative orientation and approximate distance (insert size). This
information helps to construct longer contigs, because otherwise
repetitive regions or homologous genes which are longer than the read
length cannot be distinguished if they cause loops in the assembly graph
(Ghurye, Cepeda-Espinoza \& Pop,
\protect\hyperlink{ref-GhuryeMetagenomic2016}{2016}). When the read
coverage drops for intermediate regions, the corresponding genomes also
break into multiple shorter contigs. Existing assemblers for isolate
genome assembly, which has been available for a long time (Sutton et
al., \protect\hyperlink{ref-SuttonTigr1995}{1995}; Huang \& Madan,
\protect\hyperlink{ref-HuangCap31999}{1999}), has been adjusted to
assemble metagenomes (Ghurye, Cepeda-Espinoza \& Pop,
\protect\hyperlink{ref-GhuryeMetagenomic2016}{2016}). Metagenome
assemblers must cope with the natural genetic variance of strains
compared to clonal DNA and must also take into account that, due to
different abundances in the sample, the number of genome copies varies
considerably among the species or strains, resulting in a large range of
read coverages. The assembly of reads for complex communities is
considered an algorithmic challenge, but often reduces the amount of
data considerably and produces a fraction of longer contigs which
represent full or partial genes. Assembly is therefore a reasonable
first step towards recovering the full genome sequence of environmental
microbes. In the workflow Figure~\ref{fig:metagenome_processing_steps},
the assembly bridges steps (a) and (b) because the input sequencing
reads have a length and error profile which is specific to the
sequencing platform but the output contigs represent generic sequences
with most errors removed.
Genomic methods frequently operate on complete genome sequences, for
instance inferring functional models for specific organisms (Price, Reed
\& Palsson, \protect\hyperlink{ref-PriceGenomescale2004}{2004}). Gene
regions are identified, their corresponding protein sequences determined
and hypothetical pathways constructed. To do similar in metagenomics,
contigs are often grouped to form hypothetical draft genomes, called
genome bins. The binning process tries to reconstruct the genomes and
solves a problem which, at first, appears very similar to that of
metagenome assembly. However, contig binning is usually independent of
the sequencing platform (it makes no use of sequencing quality) and
considers information which assembly programs ignore (e.g.~gene
annotations). Both steps can be iterated in a feedback cycle
(Figure~\ref{fig:assembly_binning_cycle}) to improve the quality of the
resulting genomes (Albertsen et al.,
\protect\hyperlink{ref-AlbertsenGenome2013}{2013}). Metagenome binning
connects step (b) and (c) in
Figure~\ref{fig:metagenome_processing_steps} because it reduces the data
to individual genomes. This thesis presents algorithms related to the
binning problem which I, in collaboration with my colleagues, developed
and published during my doctoral studies.
\begin{figure}[htbp]
\centering
\includegraphics{figure/assembly_binning_cycle.pdf}
\caption[Assembly and binning cycle]{Assembly and binning cycle for genome reconstruction in metagenomes. Longer contigs yield better preliminary genome bins and when collecting the reads within a bin, these are more specific to the genome and lead to better assembly.}\label{fig:assembly_binning_cycle}
\end{figure}
\subsection{Community transcriptomics, proteomics and
metabolomics}\label{community-transcriptomics-proteomics-and-metabolomics}
Nucleotide gene sequences can only tell about potential functions of an
organism but there may be much more to discover. For instance, we are
interested in seeing genes which are actively expressed and to
understand how the gene expression is regulated within the community.
The proteins, for which the genes code, are the acting agents in any
organism, so it is most important to determine the functional role of
proteins, how they interact, and which metabolites they target and
mediate. Corresponding experimental techniques for transcriptome,
proteome and metabolome analysis are being adapted and applied to
microbial communities (Turnbaugh \& Gordon,
\protect\hyperlink{ref-TurnbaughInvitation2008}{2008}; Aguiar-Pulido et
al., \protect\hyperlink{ref-AguiarpulidoMetagenomics2016}{2016}). Such
data representing cellular activity are most informative when they can
be linked to the corresponding gene sequences and genomes so that their
regulation and coupling can be studied in detail. The genomes bins
derived by metagenome binning can form the basis to build models which
can integrate information from other experiments, for instance measuring
the current state of a community in terms of genome activity,
micro-evolution or population dynamics.
\section{Metagenome binning}\label{metagenome-binning}
Functional screenings of metagenomes (Ufarté, Potocki-Veronese \&
Laville, \protect\hyperlink{ref-UfarteDiscovery2015}{2015}) aim to
identify novel enzymes with biotechnological and medical applications.
Though, when studying protein-coding genes and their regulation in more
detail, it is often beneficial to look at the corresponding genomes to
understand the genomic context. One way to collect cells and to retrieve
a full genome sequence is by sampling from the environment followed by
cultivation and sequencing, alternatively using enrichment cultures
(Dong et al., \protect\hyperlink{ref-DongReconstructing2017}{2017}) or
single-cell sequencing (Woyke et al.,
\protect\hyperlink{ref-WoykeAssembling2009}{2009},
\protect\hyperlink{ref-WoykeOne2010}{2010}). However, it can be
difficult to extract specific organisms if there are hundreds or
thousands of distinct species, subspecies or OTUs in a metagenomic
sample (Woyke et al., \protect\hyperlink{ref-WoykeAssembling2009}{2009},
\protect\hyperlink{ref-WoykeOne2010}{2010}; Hess et al.,
\protect\hyperlink{ref-HessMetagenomic2011}{2011}). Furthermore, the
cultivation conditions required to produce clone libraries may be
unknown, and environmental sequencing of extracted cells with small
amounts of DNA is still in its infancy (Mende et al.,
\protect\hyperlink{ref-MendeImproved2016}{2016}; Yu et al.,
\protect\hyperlink{ref-YuMicrofluidicbased2017}{2017}). For these
reasons, \emph{in-silico} metagenomic methods provide a solid
alternative. Metagenome sequence binning is the algorithmic equivalent
for reconstructing individual genomes from shotgun metagenome sequence
data. Broadly speaking, a genome bin is a set of sequences, usually
assembled contigs, which together present the sequenced part of a
specific community genome. Capturing these partial genomes allows
studying taxa on the level of genes and their associated functions.
Genome binning aims to recover full genomes whereas taxonomic binning
refers to the assignment of contigs to broader taxonomic groups. For an
extensive introduction to metagenome binning, see the review article
(Dröge \& McHardy, \protect\hyperlink{ref-DrogeTaxonomic2012}{2012}) in
appendix C.
\subsection{Binning methodology}\label{binning-methodology}
Binning represents a machine learning procedure in which class labels
(genomes or taxa) are assigned to data points (contigs) (see Hastie,
Tibshirani \& Friedman
(\protect\hyperlink{ref-HastieElements2001}{2001}) chapter 1, for a
comprehensive introduction to these concepts). Most of the different
algorithmic approaches to infer genome bins are either a form of data
clustering or classification, including combinations of both approaches.
Clustering is a so-called unsupervised method, which does not directly
take into account external information like available genome sequences.
The strength of clustering is that it can group any data to explore
their intrinsic structure, being able to group contigs of genomes which
have never been seen before. In contrast, classification algorithms
utilize categorized (labeled) data, for instance large genome sequence
collections, to assign sequences to genome bins. They are said to
operate in a supervised manner. By the use of prior knowledge they can
be very efficient but a major drawback is the difficulty to handle novel
genomes. Clustering and classification methods give complementary
results and it is common to combine them, for instance classifying
genome bins after clustering or initializing clusters using
classification labels (Imelfort et al.,
\protect\hyperlink{ref-ImelfortGroopm2014}{2014}).
\subsection{Sequence information for
binning}\label{sequence-information-for-binning}
Binning methods can also be categorized by the kind of information they
use. Both clustering or classification methods for binning operate on
so-called features derived from reads or contigs. These properties
inform about genome membership and discriminate contigs of different
genomes. Microbial genomes sequences expose characteristic frequencies
of short nucleotide motifs (Karlin, Mrazek \& Campbell,
\protect\hyperlink{ref-KarlinCompositional1997}{1997}) which are often
used in binning and refered to as the genome or nucleotide composition.
The combined relative frequency of guanine and cytosine (GC-content) is
a simple way to represent nucleotide composition, and an evolutionary
trait of genomes that has long been used to characterize different
species. For instance, many Actinobacteria expose a high GC-content.
Most methods, however, use short nucleotide motifs consisting of 4 to 7
bases called \(k\)-mers (\(k\) stands for the number of bases).
Alternative formulations may use Hidden Markow Models (HMMs) to describe
nucleotide composition (Brady \& Salzberg,
\protect\hyperlink{ref-BradyPhymm2009}{2009}). The second major feature
type for binning is read coverage, the amount of sequencing reads for
each assembled contig. Since contigs are constructed by stacking
(aligning) overlapping reads, each nucleotide position of a resulting
contig must be covered by at least a single read, but typically many
more. Following random shotgun sequencing with universal primers, the
expected number of reads covering a single position is approximately
proportional to the genome copy number in the sequenced sample (Lander
\& Waterman, \protect\hyperlink{ref-LanderGenomic1988}{1988}), with a
constant factor which depends on the total sequencing effort. Thus
contig coverage helps to discriminate genomes with distinct sample
abundances, but cannot differentiate between equally abundant genomes.
It is therefore desirable to generate multiple metagenome samples of a
community for which the genome copy numbers vary differently. This way,
each genome has a unique set of genome abundances. Recent studies have
shown that genome abundances represent a very informative feature type
to obtain genome bins for complex metagenomes, if many varying samples
are available (Albertsen et al.,
\protect\hyperlink{ref-AlbertsenGenome2013}{2013}; Alneberg et al.,
\protect\hyperlink{ref-AlnebergBinning2014}{2014}). Sometimes, binning
programs may also employ assembly information such as associated contigs
or scaffolds linked by paired reads (Lu et al.,
\protect\hyperlink{ref-LuCocacola2016}{2016}), but such information, if
available, is more frequently used to assess the binning quality (Patil
et al., \protect\hyperlink{ref-PatilTaxonomic2011}{2011}) or to refine
genome bins (Alneberg et al.,
\protect\hyperlink{ref-AlnebergBinning2014}{2014}).
There is a specific class of homology-based classifiers, and an example
of such a method is described in Section~\ref{sec:synopsis_taxator-tk}.
These methods employ a two-step procedure, first identifying potential
homologs for a contig, for instance by alignment to reference sequences,
and second determining a corresponding evolutionary neighborhood. This
neighborhood is usually reported by taxonomy, so that each contig is
annotated with a taxonomic path. A grouping of contigs by taxa then
provides a form of binning but higher-level taxon bins mix contigs from
several genomes, if the sample contains more than a single member of
this group. Hence, taxonomic classification using sequence similarity
can only provide a partial solution to the binning problem. However,
such annotation also informs about the taxonomic sample composition and
diversity, similar to a 16S gene analysis, and may furthermore be used
as secondary features for clustering, for instance to initialize genome
clusters (Imelfort et al.,