-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_and_eye_detector_single_image.py
36 lines (27 loc) · 1.2 KB
/
face_and_eye_detector_single_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
'''This script uses OpenCV's haarcascade (face and eye cascade) to detect face
and eyes in a given input image.'''
#Import necessary libraries
import cv2 as cv
import numpy as np
#Load face cascade and hair cascade from haarcascades folder
face_cascade = cv.CascadeClassifier("haarcascades/haarcascade_frontalface_default.xml")
eye_cascade = cv.CascadeClassifier("haarcascades/haarcascade_eye.xml")
#Read image in img and convert it to grayscale and store in gray.
#Image is converted to grayscale, as face cascade doesn't require to operate on coloured images.
img = cv.imread('images/test.jpeg')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
#Detect all faces in image.
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
#Draw a rectangle over the face, and detect eyes in faces
for (x,y,w,h) in faces:
cv.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
#ROI is region of interest with area having face inside it.
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
#Detect eyes in face
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
cv.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
cv.imshow('Image', img)
cv.waitKey(0)
cv.destroyAllWindows()