-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.yaml
111 lines (110 loc) · 2.7 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# face bounding box, point could and 3d landmarks config
3DDFA_faceBox_device: 'gpu'
3DDFA_arch: 'mobilenet' # MobileNet V1
3DDFA_widen_factor: 1.0
3DDFA_checkpoint_fp: 'weights/mb1_120x120.pth'
3DDFA_bfm_fp: 'weights/bfm_noneck_v3.pkl' # or configs/bfm_noneck_v3_slim.pkl
3DDFA_size: 120
3DDFA_num_params: 62
3DDFA_dense: True
PC_points_piars: 200
PC_points_sample_range: 38365
# CK+ dataset config
Dataset_10fold: 'dataset/CK+_10fold_samples.txt'
CK+_data_root: 'E:/cohn-kanade-images/'
CK+_dict:
0: 'Happy'
1: 'Angry'
2: 'Disgust'
3: 'Fear'
4: 'Sad'
5: 'Contempt'
6: 'Surprise'
Happy: 0
Angry: 1
Disgust: 2
Fear: 3
Sad: 4
Contempt: 5
Surprise: 6
CK+_split: 500
# fer2013 convolution config, forsaken
CONV_bs: 128
CONV_seed: 0
CONV_pth: './weights/best_checkpoint.tar'
# emotion-FAN convolution config, being used
FAN_type: 'self_relation-attention'
FAN_checkpoint: './weights/Resnet18_FER+_pytorch.pth.tar'
FAN_evey_fold_checkpoint:
1: './weights/self_relation-attention_fold_12_90.9091'
2: './weights/self_relation-attention_fold_228_92.3077'
3: './weights/self_relation-attention_fold_312_97.5'
4: './weights/self_relation-attention_fold_45_88.5714'
5: './weights/self_relation-attention_fold_52_96.6667'
6: './weights/self_relation-attention_fold_615_100.0'
7: './weights/self_relation-attention_fold_79_96.5517'
8: './weights/self_relation-attention_fold_813_100.0'
9: './weights/self_relation-attention_fold_92_100.0'
10: './weights/self_relation-attention_fold_1027_90.9091'
# PCA config
PCA_dim: 64
PCA_dir: './weights/pca.m'
# data sample strategy config
Least_frame: 20
Max_frame: 40
window_size: 270
Sample_frequency: 1
Shuffle: True
standBy: 200
selected: 100
# LSTM config
LSTM_input_dim: 512
LSTM_hidden_dim: 512
LSTM_output_dim: 7
LSTM_layerNum: 1
LSTM_cell: 'LSTM'
# Tansformer config
T_lms3d_dim: 256
T_rgb_dim: 136
T_pro_dim: 768
T_input_dim: 768
T_block_num: 6
T_head_num: 8
T_proj_dim: 1536
T_forward_dim: 2048
T_masked: True
T_activation: 'gelu'
T_output_dim: 8
T_bs_first: True
# AE config
AE_noi_percent: 0.15
AE_train_percent: 0.7
AE_loss_train: './tb/loss/AE/train/'
AE_loss_test: './tb/loss/AE/test/'
AE_mid_dim: 8
AE_pth_epoch: 6000
# ViLT config
ViLT_model_type: 2
ViLT_lms_dim: 204
ViLt_rgb_dim: 512
ViLT_embedding_dim: 2048
ViLT_block_num: 6
ViLT_head_num: 8
ViLT_forward_dim: 2048
ViLT_activation: 'gelu'
ViLT_output_dim: 7
ViLT_bs_first: True
# model config
use_cuda: True
batch_size: 64
learning_rate: 1e-3
epoch: 50
fast_fold: [1,5,9]
test_fold: 10
checkpoint_pth: '/home/exp-10086/Project/ferdataset/ourFace/B16_rgb_lms_whole_AB_HSE/'
cuda_idx: '0'
# data Post process config
vote: False
# log information config
LOG_CHECK: '!!!train:new dataset use HSE feature'
LOG_pth: 'train.log'