-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
277 lines (226 loc) · 9.92 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
import torch
import torch.nn as nn
import itertools
import functools
from torch.optim import lr_scheduler
'''
Model Initialization
'''
def init_model(model, init_type='normal', init_gain=0.02, use_cuda=False):
if use_cuda:
model.to('cuda')
def weights_init(module):
name = module.__class__.__name__
if name.find('Conv') != -1:
nn.init.normal_(module.weight.data, 0.0, init_gain)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias.data, 0.0)
elif name.find('BatchNorm') != -1:
nn.init.normal_(module.weight.data, 1.0, init_gain)
nn.init.constant_(module.bias.data, 0.0)
model.apply(weights_init)
return model
'''
Generator Network
'''
class ResnetBlock(nn.Module):
"""Define a Resnet block, we use padding type: reflect"""
def __init__(self, dim, norm_layer, use_dropout, use_bias):
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, norm_layer, use_dropout, use_bias)
def build_conv_block(self, dim, norm_layer, use_dropout, use_bias):
conv_block = []
conv_block += [nn.ReflectionPad2d(1)]
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=0, bias=use_bias), norm_layer(dim), nn.ReLU(True)]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
conv_block += [nn.ReflectionPad2d(1)]
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=0, bias=use_bias), norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
"""Forward function (with skip connections)"""
out = x + self.conv_block(x) # add skip connections
return out
class ResnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'):
super(ResnetGenerator, self).__init__()
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
model = [nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias),
norm_layer(ngf),
nn.ReLU(True)]
n_downsampling = 2
for i in range(n_downsampling): # add downsampling layers
mult = 2 ** i
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias),
norm_layer(ngf * mult * 2),
nn.ReLU(True)]
mult = 2 ** n_downsampling
for i in range(n_blocks): # add ResNet blocks
model += [ResnetBlock(ngf * mult, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]
for i in range(n_downsampling): # add upsampling layers
mult = 2 ** (n_downsampling - i)
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
kernel_size=3, stride=2,
padding=1, output_padding=1,
bias=use_bias),
norm_layer(int(ngf * mult / 2)),
nn.ReLU(True)]
model += [nn.ReflectionPad2d(3)]
model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
model += [nn.Tanh()]
self.model = nn.Sequential(*model)
def forward(self, input):
"""Standard forward"""
return self.model(input)
def Generator(input_nc, output_nc, n_filter, norm='batch', dropout=False, init_type='normal', init_gain=0.02, is_gpu=False):
net = None
if norm == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
net = ResnetGenerator(input_nc, output_nc, n_filter, norm_layer=norm_layer, use_dropout=dropout, n_blocks=6)
return init_model(net, init_type, init_gain, is_gpu)
'''
Discriminator Network
'''
class PatchGANDiscriminator(nn.Module):
# Using Patch GAN as Discriminator
def __init__(self, input_nc, n_filter, n_layers=3, norm_layer=nn.BatchNorm2d):
super(PatchGANDiscriminator, self).__init__()
bias = norm_layer != nn.BatchNorm2d
kernel = 4
padding = 1
layers = [nn.Conv2d(input_nc, n_filter, kernel_size=kernel, stride=2, padding=padding), nn.LeakyReLU(0.2,True)]
k = 1
for i in range(n_layers):
layers += [
nn.Conv2d(n_filter*k, n_filter*k*2, kernel_size=kernel, stride=2, padding=padding, bias=bias),
norm_layer(n_filter*k*2),
nn.LeakyReLU(0.2,True)
]
k *= 2
layers += [
nn.Conv2d(n_filter*k, n_filter*k*2, kernel_size=kernel, stride=1, padding=padding, bias=bias),
norm_layer(n_filter*k*2),
nn.LeakyReLU(0.2,True),
nn.Conv2d(n_filter*k*2, 1 , kernel_size=kernel, stride=1, padding=padding, bias=bias)
]
self.model = nn.Sequential(*layers)
def forward(self, input):
return self.model(input)
def Discriminator(input_nc, n_filter, n_layers=3, norm='batch', init_type='normal', init_gain=0.02, use_cuda=False):
model = PatchGANDiscriminator(input_nc, n_filter, n_layers)
return init_model(model, init_type, init_gain, use_cuda)
'''
Adversarial Loss
'''
class GANLoss(nn.Module):
# GANLoss calculator
def __init__(self):
super(GANLoss, self).__init__()
self.real_label = torch.tensor(1.0)
self.fake_label = torch.tensor(0.0)
self.loss = nn.MSELoss()
def __call__(self, prediction, goal):
if goal:
target = self.real_label.expand_as(prediction)
else:
target = self.fake_label.expand_as(prediction)
loss = self.loss(prediction, target)
'''
Cycle GAN model
'''
class CycleGAN:
def __init__(self, args):
super(CycleGAN, self).__init__()
self.args = args
print(args)
self.is_train = args.is_train
self.device = torch.device('cuda') if args.is_gpu else torch.device('cpu')
self.save_dir = os.path.join(args.checkpoints_dir, args.name)
self.print_dir = os.path.join(args.print_dir, args.name)
self.loss_names = ['genLoss_A', 'disLoss_A', 'cycleLoss_A', 'genLoss_B', 'disLoss_B', 'cycleLoss_B']
self.visual_names = ['real_A', 'fake_B', 'rec_A', 'real_B', 'fake_A', 'rec_B']
# define generator network
self.gen_A = Generator(args.input_nc, args.output_nc, args.n_filter, args.norm, args.dropout, args.init_type, args.init_gain, args.is_gpu)
self.gen_B = Generator(args.output_nc, args.input_nc, args.n_filter, args.norm, args.dropout, args.init_type, args.init_gain, args.is_gpu)
if self.is_train:
self.model_names = ['gen_A', 'dis_A', 'gen_B', 'dis_B']
# define discriminator network
self.dis_A = Discriminator(args.output_nc, args.n_filter, args.n_layers, args.norm, args.init_type, args.init_gain, args.is_gpu)
self.dis_B = Discriminator(args.input_nc, args.n_filter, args.n_layers, args.norm, args.init_type, args.init_gain, args.is_gpu)
# define loss
self.ganLoss = GANLoss().to(self.device)
self.cycleLoss = torch.nn.L1Loss()
# define optimizer
self.optimizer_G = torch.optim.Adam(itertools.chain(self.gen_A.parameters(), self.gen_B.parameters()), lr=args.lr, betas=(args.beta, 0.999))
self.optimizer_D = torch.optim.Adam(itertools.chain(self.dis_A.parameters(), self.dis_B.parameters()), lr=args.lr, betas=(args.beta, 0.999))
if args.lr_policy == 'linear':
def lambda_rule(epoch):
lr_l = 1.0 - max(0, epoch + args.epoch_count - args.n_epochs) / float(args.n_epochs_decay + 1)
return lr_l
self.lr = [lr_scheduler.LambdaLR(self.optimizer_G, lr_lambda=lambda_rule), lr_scheduler.LambdaLR(self.optimizer_D, lr_lambda=lambda_rule)]
else:
self.lr = [lr_scheduler.StepLR(self.optimizer_G, step_size=args.lr_decay_iters, gamma=0.1),lr_scheduler.StepLR(self.optimizer_D, step_size=args.lr_decay_iters, gamma=0.1)]
else:
self.model_names = ['gen_A', 'gen_B']
def lr_update(self):
for lr in self.lr:
lr.step()
lr = self.optimizer_G.param_groups[0]['lr']
print('learning rate %.7f' % (lr))
def model_save(self,epoch):
for net in self.model_names:
file = '%s_%s.pth' % (epoch, net)
path = os.path.join(self.save_dir, file)
model = getattr(self, net)
if self.args.is_gpu and torch.cuda.is_available():
torch.save(model.module.cpu().state_dict(), path)
model.cuda()
else:
torch.save(model.cpu().state_dict(), path)
def set_required_grad(self, network, requires_grad):
for net in network:
for param in net.parameters():
param.requires_grad = requires_grad
def forward(self, input_A, input_B):
# compute fake and rec pictures using generator
self.real_A = input_A.to(self.device)
self.real_B = input_B.to(self.device)
self.fake_B = self.gen_A(self.real_A)
self.fake_A = self.gen_B(self.real_B)
self.rec_A = self.gen_B(self.fake_B)
self.rec_B = self.gen_A(self.fake_A)
def backward_G(self):
self.optimizer_G.zero_grad()
self.genLoss_A = self.ganLoss(self.dis_A(self.fake_B), True)
self.genLoss_B = self.ganLoss(self.dis_B(self.fake_A), True)
self.cycleLoss_A = self.cycleLoss(self.rec_A, self.real_A) * self.args.lambda_A
self.cycleLoss_B = self.cycleLoss(self.rec_B, self.real_B) * self.args.lambda_B
self.loss_G = self.genLoss_A + self.genLoss_B + self.cycleLoss_A + self.cycleLoss_B
self.loss_G.backward()
self.optimizer_G.step()
def backward_D(self):
self.optimizer_D.zero_grad()
fake_B = self.fake_B
loss_real_A = self.ganLoss(self.dis_A(self.real_B), True)
loss_fake_A = self.ganLoss(self.dis_A(fake_B.detach()), False)
loss_A = (loss_real_A + loss_fake_A) * 0.5
loss_A.backward()
self.disLoss_A = loss_A
fake_A = self.fake_A
loss_real_B = self.ganLoss(self.dis_B(self.real_B), True)
loss_fake_B = self.ganLoss(self.dis_B(fake_A.detach()), False)
loss_B = (loss_real_B + loss_fake_B) * 0.5
loss_B.backward()
self.disLoss_B = loss_B
self.optimizer_D.step()
def Optimize(self, input_A, input_B):
self.forward(input_A, input_B)
self.set_required_grad([self.dis_A, self.dis_B], False)
self.backward_G()
self.set_required_grad([self.dis_A, self.dis_B], True)
self.backward_D()