-
Notifications
You must be signed in to change notification settings - Fork 1
/
inference.py
238 lines (174 loc) · 6.92 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import sys
if( len(sys.argv) != 2 ):
print( "You must define 1 mode: (webcam, video, image)")
exit()
DETECTION_MODE = sys.argv[1] #webcam , video or image
if( DETECTION_MODE not in ["webcam", "video", "image"] ):
print( "Mode must be one of these: (webcam, video, image) ")
exit()
import cv2
import numpy as np
import tensorflow as tf
from scipy import ndimage
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
# Import utilites
from utils import label_map_util
from utils import visualization_utils as vis_util
def detectOnVideo():
VIDEO_NAME = 'test1.mp4'
# Path to video
PATH_TO_VIDEO = os.path.join(CWD_PATH,VIDEO_NAME)
# Open video file
video = cv2.VideoCapture(PATH_TO_VIDEO)
# Open output video file
WRITTENVIDEO_PATH = CWD_PATH + "/output.avi"
frame_width = int(video.get(3))
frame_height = int(video.get(4))
new_width = int(frame_width/2)
new_height = int(frame_height/2)
print( "---------",frame_width,",",frame_height,"------FrameCount: ", video.get(7))
videoWriter = cv2.VideoWriter(WRITTENVIDEO_PATH, cv2.VideoWriter_fourcc('M','J', 'P', 'G'),
10,(new_height,new_width))
fcount=0
while(video.isOpened()):
ret, frame = video.read()
if ret == True:
frame = ndimage.rotate(frame, 270)
frame = cv2.resize(frame, (new_height, new_width))
frame_expanded = np.expand_dims(frame, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: frame_expanded})
# Draw the results of the detection (aka 'visualize the results')
vis_util.visualize_boxes_and_labels_on_image_array(
frame,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.60) # 0.60 is default value
videoWriter.write(frame)
if( fcount % 20 == 0 ):
print(fcount)
fcount = fcount + 1
# Press 'q' to quit
#if cv2.waitKey(1) == ord('q'):
# break
else:
break
print("Successfull")
# Clean up
video.release()
videoWriter.release()
cv2.destroyAllWindows()
def detectOnImage():
IMAGE_NAME = 'test1.png'
# Path to image
PATH_TO_IMAGE = os.path.join(CWD_PATH,IMAGE_NAME)
# Load image using OpenCV and
# expand image dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
image = cv2.imread(PATH_TO_IMAGE)
image_expanded = np.expand_dims(image, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded})
# Draw the results of the detection (aka 'visulaize the results')
print(boxes.shape, scores.shape, classes.shape, num.shape)
print(boxes, scores, classes)
#print boxes[0][:5] , "--", scores[0][:5], "--", classes[0][:5], "--", num[0]
#print classes[0][40:80]
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.60) # default is 0.6
# All the results have been drawn on image. Now display the image.
cv2.imshow('Object detector', image)
# Press any key to close the image
cv2.waitKey(0)
# Clean up
cv2.destroyAllWindows()
def detectOnWebcam():
# Initialize webcam feed
video = cv2.VideoCapture("http://192.168.16.195:8080/stream.wmv")
ret = video.set(3,1280)
ret = video.set(4,720)
while(True):
# Acquire frame and expand frame dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
ret, frame = video.read()
frame_expanded = np.expand_dims(frame, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: frame_expanded})
# Draw the results of the detection (aka 'visulaize the results')
vis_util.visualize_boxes_and_labels_on_image_array(
frame,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.60)
# All the results have been drawn on the frame, so it's time to display it.
cv2.imshow('Object detector', frame)
# Press 'q' to quit
if cv2.waitKey(1) == ord('q'):
break
# Clean up
video.release()
cv2.destroyAllWindows()
# Name of the directory containing the object detection module we're using
MODEL_NAME = 'inference_graph'
# Grab path to current working directory
CWD_PATH = os.getcwd()
# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt')
# Number of classes the object detector can identify
NUM_CLASSES = 9
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
# Define input and output tensors (i.e. data) for the object detection classifier
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
if( DETECTION_MODE == "video"):
detectOnVideo()
elif( DETECTION_MODE == "image"):
detectOnImage()
else:
detectOnWebcam()