Fast, lightweight, pure C/C++ HTTP server based on httplib, nlohmann::json and llama.cpp.
Set of LLM REST APIs and a simple web front end to interact with llama.cpp.
Features:
- LLM inference of F16 and quantized models on GPU and CPU
- OpenAI API compatible chat completions and embeddings routes
- Reranking endoint (WIP: ggerganov#9510)
- Parallel decoding with multi-user support
- Continuous batching
- Multimodal (wip)
- Monitoring endpoints
- Schema-constrained JSON response format
The project is under active development, and we are looking for feedback and contributors.
Common params
Argument | Explanation |
---|---|
-h, --help, --usage |
print usage and exit |
--version |
show version and build info |
--verbose-prompt |
print a verbose prompt before generation (default: false) |
-t, --threads N |
number of threads to use during generation (default: -1) (env: LLAMA_ARG_THREADS) |
-tb, --threads-batch N |
number of threads to use during batch and prompt processing (default: same as --threads) |
-C, --cpu-mask M |
CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: "") |
-Cr, --cpu-range lo-hi |
range of CPUs for affinity. Complements --cpu-mask |
--cpu-strict <0|1> |
use strict CPU placement (default: 0) |
--prio N |
set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: 0) |
--poll <0...100> |
use polling level to wait for work (0 - no polling, default: 50) |
-Cb, --cpu-mask-batch M |
CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask) |
-Crb, --cpu-range-batch lo-hi |
ranges of CPUs for affinity. Complements --cpu-mask-batch |
--cpu-strict-batch <0|1> |
use strict CPU placement (default: same as --cpu-strict) |
--prio-batch N |
set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: 0) |
--poll-batch <0|1> |
use polling to wait for work (default: same as --poll) |
-c, --ctx-size N |
size of the prompt context (default: 4096, 0 = loaded from model) (env: LLAMA_ARG_CTX_SIZE) |
-n, --predict, --n-predict N |
number of tokens to predict (default: -1, -1 = infinity, -2 = until context filled) (env: LLAMA_ARG_N_PREDICT) |
-b, --batch-size N |
logical maximum batch size (default: 2048) (env: LLAMA_ARG_BATCH) |
-ub, --ubatch-size N |
physical maximum batch size (default: 512) (env: LLAMA_ARG_UBATCH) |
--keep N |
number of tokens to keep from the initial prompt (default: 0, -1 = all) |
-fa, --flash-attn |
enable Flash Attention (default: disabled) (env: LLAMA_ARG_FLASH_ATTN) |
-p, --prompt PROMPT |
prompt to start generation with |
--no-perf |
disable internal libllama performance timings (default: false) (env: LLAMA_ARG_NO_PERF) |
-f, --file FNAME |
a file containing the prompt (default: none) |
-bf, --binary-file FNAME |
binary file containing the prompt (default: none) |
-e, --escape |
process escapes sequences (\n, \r, \t, ', ", \) (default: true) |
--no-escape |
do not process escape sequences |
--rope-scaling {none,linear,yarn} |
RoPE frequency scaling method, defaults to linear unless specified by the model (env: LLAMA_ARG_ROPE_SCALING_TYPE) |
--rope-scale N |
RoPE context scaling factor, expands context by a factor of N (env: LLAMA_ARG_ROPE_SCALE) |
--rope-freq-base N |
RoPE base frequency, used by NTK-aware scaling (default: loaded from model) (env: LLAMA_ARG_ROPE_FREQ_BASE) |
--rope-freq-scale N |
RoPE frequency scaling factor, expands context by a factor of 1/N (env: LLAMA_ARG_ROPE_FREQ_SCALE) |
--yarn-orig-ctx N |
YaRN: original context size of model (default: 0 = model training context size) (env: LLAMA_ARG_YARN_ORIG_CTX) |
--yarn-ext-factor N |
YaRN: extrapolation mix factor (default: -1.0, 0.0 = full interpolation) (env: LLAMA_ARG_YARN_EXT_FACTOR) |
--yarn-attn-factor N |
YaRN: scale sqrt(t) or attention magnitude (default: 1.0) (env: LLAMA_ARG_YARN_ATTN_FACTOR) |
--yarn-beta-slow N |
YaRN: high correction dim or alpha (default: 1.0) (env: LLAMA_ARG_YARN_BETA_SLOW) |
--yarn-beta-fast N |
YaRN: low correction dim or beta (default: 32.0) (env: LLAMA_ARG_YARN_BETA_FAST) |
-dkvc, --dump-kv-cache |
verbose print of the KV cache |
-nkvo, --no-kv-offload |
disable KV offload (env: LLAMA_ARG_NO_KV_OFFLOAD) |
-ctk, --cache-type-k TYPE |
KV cache data type for K allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1 (default: f16) (env: LLAMA_ARG_CACHE_TYPE_K) |
-ctv, --cache-type-v TYPE |
KV cache data type for V allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1 (default: f16) (env: LLAMA_ARG_CACHE_TYPE_V) |
-dt, --defrag-thold N |
KV cache defragmentation threshold (default: 0.1, < 0 - disabled) (env: LLAMA_ARG_DEFRAG_THOLD) |
-np, --parallel N |
number of parallel sequences to decode (default: 1) (env: LLAMA_ARG_N_PARALLEL) |
--mlock |
force system to keep model in RAM rather than swapping or compressing (env: LLAMA_ARG_MLOCK) |
--no-mmap |
do not memory-map model (slower load but may reduce pageouts if not using mlock) (env: LLAMA_ARG_NO_MMAP) |
--numa TYPE |
attempt optimizations that help on some NUMA systems - distribute: spread execution evenly over all nodes - isolate: only spawn threads on CPUs on the node that execution started on - numactl: use the CPU map provided by numactl if run without this previously, it is recommended to drop the system page cache before using this see ggerganov#1437 (env: LLAMA_ARG_NUMA) |
-dev, --device <dev1,dev2,..> |
comma-separated list of devices to use for offloading (none = don't offload) use --list-devices to see a list of available devices (env: LLAMA_ARG_DEVICE) |
--list-devices |
print list of available devices and exit |
-ngl, --gpu-layers, --n-gpu-layers N |
number of layers to store in VRAM (env: LLAMA_ARG_N_GPU_LAYERS) |
-sm, --split-mode {none,layer,row} |
how to split the model across multiple GPUs, one of: - none: use one GPU only - layer (default): split layers and KV across GPUs - row: split rows across GPUs (env: LLAMA_ARG_SPLIT_MODE) |
-ts, --tensor-split N0,N1,N2,... |
fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1 (env: LLAMA_ARG_TENSOR_SPLIT) |
-mg, --main-gpu INDEX |
the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: 0) (env: LLAMA_ARG_MAIN_GPU) |
--check-tensors |
check model tensor data for invalid values (default: false) |
--override-kv KEY=TYPE:VALUE |
advanced option to override model metadata by key. may be specified multiple times. types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false |
--lora FNAME |
path to LoRA adapter (can be repeated to use multiple adapters) |
--lora-scaled FNAME SCALE |
path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters) |
--control-vector FNAME |
add a control vector note: this argument can be repeated to add multiple control vectors |
--control-vector-scaled FNAME SCALE |
add a control vector with user defined scaling SCALE note: this argument can be repeated to add multiple scaled control vectors |
--control-vector-layer-range START END |
layer range to apply the control vector(s) to, start and end inclusive |
-m, --model FNAME |
model path (default: models/$filename with filename from --hf-file or --model-url if set, otherwise models/7B/ggml-model-f16.gguf)(env: LLAMA_ARG_MODEL) |
-mu, --model-url MODEL_URL |
model download url (default: unused) (env: LLAMA_ARG_MODEL_URL) |
-hfr, --hf-repo REPO |
Hugging Face model repository (default: unused) (env: LLAMA_ARG_HF_REPO) |
-hff, --hf-file FILE |
Hugging Face model file (default: unused) (env: LLAMA_ARG_HF_FILE) |
-hft, --hf-token TOKEN |
Hugging Face access token (default: value from HF_TOKEN environment variable) (env: HF_TOKEN) |
--log-disable |
Log disable |
--log-file FNAME |
Log to file |
--log-colors |
Enable colored logging (env: LLAMA_LOG_COLORS) |
-v, --verbose, --log-verbose |
Set verbosity level to infinity (i.e. log all messages, useful for debugging) |
-lv, --verbosity, --log-verbosity N |
Set the verbosity threshold. Messages with a higher verbosity will be ignored. (env: LLAMA_LOG_VERBOSITY) |
--log-prefix |
Enable prefx in log messages (env: LLAMA_LOG_PREFIX) |
--log-timestamps |
Enable timestamps in log messages (env: LLAMA_LOG_TIMESTAMPS) |
Sampling params
Argument | Explanation |
---|---|
--samplers SAMPLERS |
samplers that will be used for generation in the order, separated by ';' (default: dry;top_k;typ_p;top_p;min_p;xtc;temperature) |
-s, --seed SEED |
RNG seed (default: -1, use random seed for -1) |
--sampling-seq SEQUENCE |
simplified sequence for samplers that will be used (default: dkypmxt) |
--ignore-eos |
ignore end of stream token and continue generating (implies --logit-bias EOS-inf) |
--temp N |
temperature (default: 0.8) |
--top-k N |
top-k sampling (default: 40, 0 = disabled) |
--top-p N |
top-p sampling (default: 0.9, 1.0 = disabled) |
--min-p N |
min-p sampling (default: 0.1, 0.0 = disabled) |
--xtc-probability N |
xtc probability (default: 0.0, 0.0 = disabled) |
--xtc-threshold N |
xtc threshold (default: 0.1, 1.0 = disabled) |
--typical N |
locally typical sampling, parameter p (default: 1.0, 1.0 = disabled) |
--repeat-last-n N |
last n tokens to consider for penalize (default: 64, 0 = disabled, -1 = ctx_size) |
--repeat-penalty N |
penalize repeat sequence of tokens (default: 1.0, 1.0 = disabled) |
--presence-penalty N |
repeat alpha presence penalty (default: 0.0, 0.0 = disabled) |
--frequency-penalty N |
repeat alpha frequency penalty (default: 0.0, 0.0 = disabled) |
--dry-multiplier N |
set DRY sampling multiplier (default: 0.0, 0.0 = disabled) |
--dry-base N |
set DRY sampling base value (default: 1.75) |
--dry-allowed-length N |
set allowed length for DRY sampling (default: 2) |
--dry-penalty-last-n N |
set DRY penalty for the last n tokens (default: -1, 0 = disable, -1 = context size) |
--dry-sequence-breaker STRING |
add sequence breaker for DRY sampling, clearing out default breakers ('\n', ':', '"', '*') in the process; use "none" to not use any sequence breakers |
--dynatemp-range N |
dynamic temperature range (default: 0.0, 0.0 = disabled) |
--dynatemp-exp N |
dynamic temperature exponent (default: 1.0) |
--mirostat N |
use Mirostat sampling. Top K, Nucleus and Locally Typical samplers are ignored if used. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) |
--mirostat-lr N |
Mirostat learning rate, parameter eta (default: 0.1) |
--mirostat-ent N |
Mirostat target entropy, parameter tau (default: 5.0) |
-l, --logit-bias TOKEN_ID(+/-)BIAS |
modifies the likelihood of token appearing in the completion, i.e. --logit-bias 15043+1 to increase likelihood of token ' Hello',or --logit-bias 15043-1 to decrease likelihood of token ' Hello' |
--grammar GRAMMAR |
BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '') |
--grammar-file FNAME |
file to read grammar from |
-j, --json-schema SCHEMA |
JSON schema to constrain generations (https://json-schema.org/), e.g. {} for any JSON objectFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead |
Example-specific params
Argument | Explanation |
---|---|
--no-context-shift |
disables context shift on inifinite text generation (default: disabled) (env: LLAMA_ARG_NO_CONTEXT_SHIFT) |
-sp, --special |
special tokens output enabled (default: false) |
--no-warmup |
skip warming up the model with an empty run |
--spm-infill |
use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled) |
--pooling {none,mean,cls,last,rank} |
pooling type for embeddings, use model default if unspecified (env: LLAMA_ARG_POOLING) |
-cb, --cont-batching |
enable continuous batching (a.k.a dynamic batching) (default: enabled) (env: LLAMA_ARG_CONT_BATCHING) |
-nocb, --no-cont-batching |
disable continuous batching (env: LLAMA_ARG_NO_CONT_BATCHING) |
-a, --alias STRING |
set alias for model name (to be used by REST API) (env: LLAMA_ARG_ALIAS) |
--host HOST |
ip address to listen (default: 127.0.0.1) (env: LLAMA_ARG_HOST) |
--port PORT |
port to listen (default: 8080) (env: LLAMA_ARG_PORT) |
--path PATH |
path to serve static files from (default: ) (env: LLAMA_ARG_STATIC_PATH) |
--no-webui |
Disable the Web UI (default: enabled) (env: LLAMA_ARG_NO_WEBUI) |
--embedding, --embeddings |
restrict to only support embedding use case; use only with dedicated embedding models (default: disabled) (env: LLAMA_ARG_EMBEDDINGS) |
--reranking, --rerank |
enable reranking endpoint on server (default: disabled) (env: LLAMA_ARG_RERANKING) |
--api-key KEY |
API key to use for authentication (default: none) (env: LLAMA_API_KEY) |
--api-key-file FNAME |
path to file containing API keys (default: none) |
--ssl-key-file FNAME |
path to file a PEM-encoded SSL private key (env: LLAMA_ARG_SSL_KEY_FILE) |
--ssl-cert-file FNAME |
path to file a PEM-encoded SSL certificate (env: LLAMA_ARG_SSL_CERT_FILE) |
-to, --timeout N |
server read/write timeout in seconds (default: 600) (env: LLAMA_ARG_TIMEOUT) |
--threads-http N |
number of threads used to process HTTP requests (default: -1) (env: LLAMA_ARG_THREADS_HTTP) |
--cache-reuse N |
min chunk size to attempt reusing from the cache via KV shifting (default: 0) (env: LLAMA_ARG_CACHE_REUSE) |
--metrics |
enable prometheus compatible metrics endpoint (default: disabled) (env: LLAMA_ARG_ENDPOINT_METRICS) |
--slots |
enable slots monitoring endpoint (default: disabled) (env: LLAMA_ARG_ENDPOINT_SLOTS) |
--props |
enable changing global properties via POST /props (default: disabled) (env: LLAMA_ARG_ENDPOINT_PROPS) |
--no-slots |
disables slots monitoring endpoint (env: LLAMA_ARG_NO_ENDPOINT_SLOTS) |
--slot-save-path PATH |
path to save slot kv cache (default: disabled) |
--chat-template JINJA_TEMPLATE |
set custom jinja chat template (default: template taken from model's metadata) if suffix/prefix are specified, template will be disabled list of built-in templates: chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2, exaone3, gemma, granite, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip, llama3, minicpm, mistral-v1, mistral-v3, mistral-v3-tekken, mistral-v7, monarch, openchat, orion, phi3, rwkv-world, vicuna, vicuna-orca, zephyr (env: LLAMA_ARG_CHAT_TEMPLATE) |
-sps, --slot-prompt-similarity SIMILARITY |
how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled) |
--lora-init-without-apply |
load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) |
--draft-max, --draft, --draft-n N |
number of tokens to draft for speculative decoding (default: 16) (env: LLAMA_ARG_DRAFT_MAX) |
--draft-min, --draft-n-min N |
minimum number of draft tokens to use for speculative decoding (default: 5) (env: LLAMA_ARG_DRAFT_MIN) |
--draft-p-min P |
minimum speculative decoding probability (greedy) (default: 0.9) (env: LLAMA_ARG_DRAFT_P_MIN) |
-cd, --ctx-size-draft N |
size of the prompt context for the draft model (default: 0, 0 = loaded from model) (env: LLAMA_ARG_CTX_SIZE_DRAFT) |
-devd, --device-draft <dev1,dev2,..> |
comma-separated list of devices to use for offloading the draft model (none = don't offload) use --list-devices to see a list of available devices |
-ngld, --gpu-layers-draft, --n-gpu-layers-draft N |
number of layers to store in VRAM for the draft model (env: LLAMA_ARG_N_GPU_LAYERS_DRAFT) |
-md, --model-draft FNAME |
draft model for speculative decoding (default: unused) (env: LLAMA_ARG_MODEL_DRAFT) |
Note: If both command line argument and environment variable are both set for the same param, the argument will take precedence over env var.
Example usage of docker compose with environment variables:
services:
llamacpp-server:
image: ghcr.io/ggerganov/llama.cpp:server
ports:
- 8080:8080
volumes:
- ./models:/models
environment:
# alternatively, you can use "LLAMA_ARG_MODEL_URL" to download the model
LLAMA_ARG_MODEL: /models/my_model.gguf
LLAMA_ARG_CTX_SIZE: 4096
LLAMA_ARG_N_PARALLEL: 2
LLAMA_ARG_ENDPOINT_METRICS: 1
LLAMA_ARG_PORT: 8080
llama-server
is built alongside everything else from the root of the project
-
Using
CMake
:cmake -B build cmake --build build --config Release -t llama-server
Binary is at
./build/bin/llama-server
llama-server
can also be built with SSL support using OpenSSL 3
-
Using
CMake
:cmake -B build -DLLAMA_SERVER_SSL=ON cmake --build build --config Release -t llama-server
The project includes a web-based user interface that enables interaction with the model through the /chat/completions
endpoint.
The web UI is developed using:
vue
framework for frontend developmenttailwindcss
anddaisyui
for stylingvite
for build tooling
A pre-built version is available as a single HTML file under /public
directory.
To build or to run the dev server (with hot reload):
# make sure you have nodejs installed
cd examples/server/webui
npm i
# to run the dev server
npm run dev
# to build the public/index.html
npm run build
NOTE: if you are using the vite dev server, you can change the API base URL to llama.cpp. To do that, run this code snippet in browser's console:
localStorage.setItem('base', 'http://localhost:8080')
To get started right away, run the following command, making sure to use the correct path for the model you have:
./llama-server -m models/7B/ggml-model.gguf -c 2048
llama-server.exe -m models\7B\ggml-model.gguf -c 2048
The above command will start a server that by default listens on 127.0.0.1:8080
.
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.
docker run -p 8080:8080 -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080
# or, with CUDA:
docker run -p 8080:8080 -v /path/to/models:/models --gpus all ghcr.io/ggerganov/llama.cpp:server-cuda -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080 --n-gpu-layers 99
Using curl. On Windows, curl.exe
should be available in the base OS.
curl --request POST \
--url http://localhost:8080/completion \
--header "Content-Type: application/json" \
--data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'
We implemented a server test framework using human-readable scenario.
Before submitting an issue, please try to reproduce it with this format.
You need to have Node.js installed.
mkdir llama-client
cd llama-client
Create an index.js file and put this inside:
const prompt = "Building a website can be done in 10 simple steps:"
async function test() {
let response = await fetch("http://127.0.0.1:8080/completion", {
method: "POST",
body: JSON.stringify({
prompt,
n_predict: 64,
})
})
console.log((await response.json()).content)
}
test()
And run it:
node index.js
Response format
- HTTP status code 503
- Body:
{"error": {"code": 503, "message": "Loading model", "type": "unavailable_error"}}
- Explanation: the model is still being loaded.
- Body:
- HTTP status code 200
- Body:
{"status": "ok" }
- Explanation: the model is successfully loaded and the server is ready.
- Body:
Options:
prompt
: Provide the prompt for this completion as a string or as an array of strings or numbers representing tokens. Internally, if cache_prompt
is true
, the prompt is compared to the previous completion and only the "unseen" suffix is evaluated. A BOS
token is inserted at the start, if all of the following conditions are true:
- The prompt is a string or an array with the first element given as a string
- The model's
tokenizer.ggml.add_bos_token
metadata istrue
These input shapes and data type are allowed for prompt
:
- Single string:
"string"
- Single sequence of tokens:
[12, 34, 56]
- Mixed tokens and strings:
[12, 34, "string", 56, 78]
Multiple prompts are also supported. In this case, the completion result will be an array.
- Only strings:
["string1", "string2"]
- Strings and sequences of tokens:
["string1", [12, 34, 56]]
- Mixed types:
[[12, 34, "string", 56, 78], [12, 34, 56], "string"]
temperature
: Adjust the randomness of the generated text. Default: 0.8
dynatemp_range
: Dynamic temperature range. The final temperature will be in the range of [temperature - dynatemp_range; temperature + dynatemp_range]
Default: 0.0
, which is disabled.
dynatemp_exponent
: Dynamic temperature exponent. Default: 1.0
top_k
: Limit the next token selection to the K most probable tokens. Default: 40
top_p
: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P. Default: 0.95
min_p
: The minimum probability for a token to be considered, relative to the probability of the most likely token. Default: 0.05
n_predict
: Set the maximum number of tokens to predict when generating text. Note: May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. Default: -1
, where -1
is infinity.
n_indent
: Specify the minimum line indentation for the generated text in number of whitespace characters. Useful for code completion tasks. Default: 0
n_keep
: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded. The number excludes the BOS token.
By default, this value is set to 0
, meaning no tokens are kept. Use -1
to retain all tokens from the prompt.
stream
: Allows receiving each predicted token in real-time instead of waiting for the completion to finish (uses a different response format). To enable this, set to true
.
stop
: Specify a JSON array of stopping strings.
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration. Default: []
typical_p
: Enable locally typical sampling with parameter p. Default: 1.0
, which is disabled.
repeat_penalty
: Control the repetition of token sequences in the generated text. Default: 1.1
repeat_last_n
: Last n tokens to consider for penalizing repetition. Default: 64
, where 0
is disabled and -1
is ctx-size.
presence_penalty
: Repeat alpha presence penalty. Default: 0.0
, which is disabled.
frequency_penalty
: Repeat alpha frequency penalty. Default: 0.0
, which is disabled.
dry_multiplier
: Set the DRY (Don't Repeat Yourself) repetition penalty multiplier. Default: 0.0
, which is disabled.
dry_base
: Set the DRY repetition penalty base value. Default: 1.75
dry_allowed_length
: Tokens that extend repetition beyond this receive exponentially increasing penalty: multiplier * base ^ (length of repeating sequence before token - allowed length). Default: 2
dry_penalty_last_n
: How many tokens to scan for repetitions. Default: -1
, where 0
is disabled and -1
is context size.
dry_sequence_breakers
: Specify an array of sequence breakers for DRY sampling. Only a JSON array of strings is accepted. Default: ['\n', ':', '"', '*']
xtc_probability
: Set the chance for token removal via XTC sampler. Default: 0.0
, which is disabled.
xtc_threshold
: Set a minimum probability threshold for tokens to be removed via XTC sampler. Default: 0.1
(> 0.5
disables XTC)
mirostat
: Enable Mirostat sampling, controlling perplexity during text generation. Default: 0
, where 0
is disabled, 1
is Mirostat, and 2
is Mirostat 2.0.
mirostat_tau
: Set the Mirostat target entropy, parameter tau. Default: 5.0
mirostat_eta
: Set the Mirostat learning rate, parameter eta. Default: 0.1
grammar
: Set grammar for grammar-based sampling. Default: no grammar
json_schema
: Set a JSON schema for grammar-based sampling (e.g. {"items": {"type": "string"}, "minItems": 10, "maxItems": 100}
of a list of strings, or {}
for any JSON). See tests for supported features. Default: no JSON schema.
seed
: Set the random number generator (RNG) seed. Default: -1
, which is a random seed.
ignore_eos
: Ignore end of stream token and continue generating. Default: false
logit_bias
: Modify the likelihood of a token appearing in the generated text completion. For example, use "logit_bias": [[15043,1.0]]
to increase the likelihood of the token 'Hello', or "logit_bias": [[15043,-1.0]]
to decrease its likelihood. Setting the value to false, "logit_bias": [[15043,false]]
ensures that the token Hello
is never produced. The tokens can also be represented as strings, e.g. [["Hello, World!",-0.5]]
will reduce the likelihood of all the individual tokens that represent the string Hello, World!
, just like the presence_penalty
does. Default: []
n_probs
: If greater than 0, the response also contains the probabilities of top N tokens for each generated token given the sampling settings. Note that for temperature < 0 the tokens are sampled greedily but token probabilities are still being calculated via a simple softmax of the logits without considering any other sampler settings. Default: 0
min_keep
: If greater than 0, force samplers to return N possible tokens at minimum. Default: 0
t_max_predict_ms
: Set a time limit in milliseconds for the prediction (a.k.a. text-generation) phase. The timeout will trigger if the generation takes more than the specified time (measured since the first token was generated) and if a new-line character has already been generated. Useful for FIM applications. Default: 0
, which is disabled.
image_data
: An array of objects to hold base64-encoded image data
and its id
s to be reference in prompt
. You can determine the place of the image in the prompt as in the following: USER:[img-12]Describe the image in detail.\nASSISTANT:
. In this case, [img-12]
will be replaced by the embeddings of the image with id 12
in the following image_data
array: {..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}
. Use image_data
only with multimodal models, e.g., LLaVA.
id_slot
: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot. Default: -1
cache_prompt
: Re-use KV cache from a previous request if possible. This way the common prefix does not have to be re-processed, only the suffix that differs between the requests. Because (depending on the backend) the logits are not guaranteed to be bit-for-bit identical for different batch sizes (prompt processing vs. token generation) enabling this option can cause nondeterministic results. Default: true
return_tokens
: Return the raw generated token ids in the tokens
field. Otherwise tokens
remains empty. Default: false
samplers
: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: ["dry", "top_k", "typ_p", "top_p", "min_p", "xtc", "temperature"]
- these are all the available values.
timings_per_token
: Include prompt processing and text generation speed information in each response. Default: false
Response format
-
Note: In streaming mode (
stream
), onlycontent
,tokens
andstop
will be returned until end of completion. Responses are sent using the Server-sent events standard. Note: the browser'sEventSource
interface cannot be used due to its lack ofPOST
request support. -
completion_probabilities
: An array of token probabilities for each completion. The array's length isn_predict
. Each item in the array has the following structure:
{
"content": "<the token generated by the model>",
"tokens": [ generated token ids if requested ],
"probs": [
{
"prob": float,
"tok_str": "<most likely token>"
},
{
"prob": float,
"tok_str": "<second most likely token>"
},
...
]
},
Notice that each probs
is an array of length n_probs
.
content
: Completion result as a string (excludingstopping_word
if any). In case of streaming mode, will contain the next token as a string.tokens
: Same ascontent
but represented as raw token ids. Only populated if"return_tokens": true
or"stream": true
in the request.stop
: Boolean for use withstream
to check whether the generation has stopped (Note: This is not related to stopping words arraystop
from input options)generation_settings
: The provided options above excludingprompt
but includingn_ctx
,model
. These options may differ from the original ones in some way (e.g. bad values filtered out, strings converted to tokens, etc.).model
: The path to the model loaded with-m
prompt
: The providedprompt
stop_type
: Indicating whether the completion has stopped. Possible values are:none
: Generating (not stopped)eos
: Stopped because it encountered the EOS tokenlimit
: Stopped becausen_predict
tokens were generated before stop words or EOS was encounteredword
: Stopped due to encountering a stopping word fromstop
JSON array provided
stopping_word
: The stopping word encountered which stopped the generation (or "" if not stopped due to a stopping word)timings
: Hash of timing information about the completion such as the number of tokenspredicted_per_second
tokens_cached
: Number of tokens from the prompt which could be re-used from previous completion (n_past
)tokens_evaluated
: Number of tokens evaluated in total from the prompttruncated
: Boolean indicating if the context size was exceeded during generation, i.e. the number of tokens provided in the prompt (tokens_evaluated
) plus tokens generated (tokens predicted
) exceeded the context size (n_ctx
)
Options:
content
: (Required) The text to tokenize.
add_special
: (Optional) Boolean indicating if special tokens, i.e. BOS
, should be inserted. Default: false
with_pieces
: (Optional) Boolean indicating whether to return token pieces along with IDs. Default: false
Response:
Returns a JSON object with a tokens
field containing the tokenization result. The tokens
array contains either just token IDs or objects with id
and piece
fields, depending on the with_pieces
parameter. The piece field is a string if the piece is valid unicode or a list of bytes otherwise.
If with_pieces
is false
:
{
"tokens": [123, 456, 789]
}
If with_pieces
is true
:
{
"tokens": [
{"id": 123, "piece": "Hello"},
{"id": 456, "piece": " world"},
{"id": 789, "piece": "!"}
]
}
With input 'á' (utf8 hex: C3 A1) on tinyllama/stories260k
{
"tokens": [
{"id": 198, "piece": [195]}, // hex C3
{"id": 164, "piece": [161]} // hex A1
]
}
Options:
tokens
: Set the tokens to detokenize.
The same as the embedding example does.
Options:
content
: Set the text to process.
image_data
: An array of objects to hold base64-encoded image data
and its id
s to be reference in content
. You can determine the place of the image in the content as in the following: Image: [img-21].\nCaption: This is a picture of a house
. In this case, [img-21]
will be replaced by the embeddings of the image with id 21
in the following image_data
array: {..., "image_data": [{"data": "<BASE64_STRING>", "id": 21}]}
. Use image_data
only with multimodal models, e.g., LLaVA.
Similar to https://jina.ai/reranker/ but might change in the future.
Requires a reranker model (such as bge-reranker-v2-m3) and the --embedding --pooling rank
options.
Options:
query
: The query against which the documents will be ranked.
documents
: An array strings representing the documents to be ranked.
Aliases:
/rerank
/v1/rerank
/v1/reranking
Examples:
curl http://127.0.0.1:8012/v1/rerank \
-H "Content-Type: application/json" \
-d '{
"model": "some-model",
"query": "What is panda?",
"top_n": 3,
"documents": [
"hi",
"it is a bear",
"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China."
]
}' | jq
Takes a prefix and a suffix and returns the predicted completion as stream.
Options:
input_prefix
: Set the prefix of the code to infill.input_suffix
: Set the suffix of the code to infill.input_extra
: Additional context inserted before the FIM prefix.prompt
: Added after theFIM_MID
token
input_extra
is array of {"filename": string, "text": string}
objects.
The endpoint also accepts all the options of /completion
.
If the model has FIM_REPO
and FIM_FILE_SEP
tokens, the repo-level pattern is used:
<FIM_REP>myproject
<FIM_SEP>{chunk 0 filename}
{chunk 0 text}
<FIM_SEP>{chunk 1 filename}
{chunk 1 text}
...
<FIM_SEP>filename
<FIM_PRE>[input_prefix]<FIM_SUF>[input_suffix]<FIM_MID>[prompt]
If the tokens are missing, then the extra context is simply prefixed at the start:
[input_extra]<FIM_PRE>[input_prefix]<FIM_SUF>[input_suffix]<FIM_MID>[prompt]
This endpoint is public (no API key check). By default, it is read-only. To make POST request to change global properties, you need to start server with --props
Response format
{
"default_generation_settings": {
"id": 0,
"id_task": -1,
"n_ctx": 1024,
"speculative": false,
"is_processing": false,
"params": {
"n_predict": -1,
"seed": 4294967295,
"temperature": 0.800000011920929,
"dynatemp_range": 0.0,
"dynatemp_exponent": 1.0,
"top_k": 40,
"top_p": 0.949999988079071,
"min_p": 0.05000000074505806,
"xtc_probability": 0.0,
"xtc_threshold": 0.10000000149011612,
"typical_p": 1.0,
"repeat_last_n": 64,
"repeat_penalty": 1.0,
"presence_penalty": 0.0,
"frequency_penalty": 0.0,
"dry_multiplier": 0.0,
"dry_base": 1.75,
"dry_allowed_length": 2,
"dry_penalty_last_n": -1,
"dry_sequence_breakers": [
"\n",
":",
"\"",
"*"
],
"mirostat": 0,
"mirostat_tau": 5.0,
"mirostat_eta": 0.10000000149011612,
"stop": [],
"max_tokens": -1,
"n_keep": 0,
"n_discard": 0,
"ignore_eos": false,
"stream": true,
"n_probs": 0,
"min_keep": 0,
"grammar": "",
"samplers": [
"dry",
"top_k",
"typ_p",
"top_p",
"min_p",
"xtc",
"temperature"
],
"speculative.n_max": 16,
"speculative.n_min": 5,
"speculative.p_min": 0.8999999761581421,
"timings_per_token": false
},
"prompt": "",
"next_token": {
"has_next_token": true,
"has_new_line": false,
"n_remain": -1,
"n_decoded": 0,
"stopping_word": ""
}
},
"total_slots": 1,
"model_path": "../models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf",
"chat_template": "..."
}
default_generation_settings
- the default generation settings for the/completion
endpoint, which has the same fields as thegeneration_settings
response object from the/completion
endpoint.total_slots
- the total number of slots for process requests (defined by--parallel
option)model_path
- the path to model file (same with-m
argument)chat_template
- the model's original Jinja2 prompt template
To use this endpoint with POST method, you need to start server with --props
Options:
- None yet
Given a ChatML-formatted json description in messages
, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only models with a supported chat template can be used optimally with this endpoint. By default, the ChatML template will be used.
Options:
See OpenAI Chat Completions API documentation. While some OpenAI-specific features such as function calling aren't supported, llama.cpp /completion
-specific features such as mirostat
are supported.
The response_format
parameter supports both plain JSON output (e.g. {"type": "json_object"}
) and schema-constrained JSON (e.g. {"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}
or {"type": "json_schema", "schema": {"properties": { "name": { "title": "Name", "type": "string" }, "date": { "title": "Date", "type": "string" }, "participants": { "items": {"type: "string" }, "title": "Participants", "type": "string" } } } }
), similar to other OpenAI-inspired API providers.
Examples:
You can use either Python openai
library with appropriate checkpoints:
import openai
client = openai.OpenAI(
base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port"
api_key = "sk-no-key-required"
)
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."},
{"role": "user", "content": "Write a limerick about python exceptions"}
]
)
print(completion.choices[0].message)
... or raw HTTP requests:
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."
},
{
"role": "user",
"content": "Write a limerick about python exceptions"
}
]
}'
This endpoint requires that the model uses a pooling different than type none
. The embeddings are normalized using the Eucledian norm.
Options:
See OpenAI Embeddings API documentation.
Examples:
-
input as string
curl http://localhost:8080/v1/embeddings \ -H "Content-Type: application/json" \ -H "Authorization: Bearer no-key" \ -d '{ "input": "hello", "model":"GPT-4", "encoding_format": "float" }'
-
input
as string arraycurl http://localhost:8080/v1/embeddings \ -H "Content-Type: application/json" \ -H "Authorization: Bearer no-key" \ -d '{ "input": ["hello", "world"], "model":"GPT-4", "encoding_format": "float" }'
This endpoint supports all poolings, including --pooling none
. When the pooling is none
, the responses will contain the unnormalized embeddings for all input tokens. For all other pooling types, only the pooled embeddings are returned, normalized using Euclidian norm.
Note that the response format of this endpoint is different from /v1/embeddings
.
Options:
Same as the /v1/embeddings
endpoint.
Examples:
Same as the /v1/embeddings
endpoint.
Response format
[
{
"index": 0,
"embedding": [
[ ... embeddings for token 0 ... ],
[ ... embeddings for token 1 ... ],
[ ... ]
[ ... embeddings for token N-1 ... ],
]
},
...
{
"index": P,
"embedding": [
[ ... embeddings for token 0 ... ],
[ ... embeddings for token 1 ... ],
[ ... ]
[ ... embeddings for token N-1 ... ],
]
}
]
Warning
This endpoint is intended for debugging and may be modified in future versions. For security reasons, we strongly advise against enabling it in production environments.
This endpoint is disabled by default and can be enabled with --slots
If query param ?fail_on_no_slot=1
is set, this endpoint will respond with status code 503 if there is no available slots.
Response format
Example:
[
{
"id": 0,
"id_task": -1,
"n_ctx": 1024,
"speculative": false,
"is_processing": false,
"params": {
"n_predict": -1,
"seed": 4294967295,
"temperature": 0.800000011920929,
"dynatemp_range": 0.0,
"dynatemp_exponent": 1.0,
"top_k": 40,
"top_p": 0.949999988079071,
"min_p": 0.05000000074505806,
"xtc_probability": 0.0,
"xtc_threshold": 0.10000000149011612,
"typical_p": 1.0,
"repeat_last_n": 64,
"repeat_penalty": 1.0,
"presence_penalty": 0.0,
"frequency_penalty": 0.0,
"dry_multiplier": 0.0,
"dry_base": 1.75,
"dry_allowed_length": 2,
"dry_penalty_last_n": -1,
"dry_sequence_breakers": [
"\n",
":",
"\"",
"*"
],
"mirostat": 0,
"mirostat_tau": 5.0,
"mirostat_eta": 0.10000000149011612,
"stop": [],
"max_tokens": -1,
"n_keep": 0,
"n_discard": 0,
"ignore_eos": false,
"stream": true,
"n_probs": 0,
"min_keep": 0,
"grammar": "",
"samplers": [
"dry",
"top_k",
"typ_p",
"top_p",
"min_p",
"xtc",
"temperature"
],
"speculative.n_max": 16,
"speculative.n_min": 5,
"speculative.p_min": 0.8999999761581421,
"timings_per_token": false
},
"prompt": "",
"next_token": {
"has_next_token": true,
"has_new_line": false,
"n_remain": -1,
"n_decoded": 0,
"stopping_word": ""
}
}
]
This endpoint is only accessible if --metrics
is set.
Available metrics:
llamacpp:prompt_tokens_total
: Number of prompt tokens processed.llamacpp:tokens_predicted_total
: Number of generation tokens processed.llamacpp:prompt_tokens_seconds
: Average prompt throughput in tokens/s.llamacpp:predicted_tokens_seconds
: Average generation throughput in tokens/s.llamacpp:kv_cache_usage_ratio
: KV-cache usage.1
means 100 percent usage.llamacpp:kv_cache_tokens
: KV-cache tokens.llamacpp:requests_processing
: Number of requests processing.llamacpp:requests_deferred
: Number of requests deferred.
Options:
filename
: Name of the file to save the slot's prompt cache. The file will be saved in the directory specified by the --slot-save-path
server parameter.
Response format
{
"id_slot": 0,
"filename": "slot_save_file.bin",
"n_saved": 1745,
"n_written": 14309796,
"timings": {
"save_ms": 49.865
}
}
Options:
filename
: Name of the file to restore the slot's prompt cache from. The file should be located in the directory specified by the --slot-save-path
server parameter.
Response format
{
"id_slot": 0,
"filename": "slot_save_file.bin",
"n_restored": 1745,
"n_read": 14309796,
"timings": {
"restore_ms": 42.937
}
}
Response format
{
"id_slot": 0,
"n_erased": 1745
}
This endpoint returns the loaded LoRA adapters. You can add adapters using --lora
when starting the server, for example: --lora my_adapter_1.gguf --lora my_adapter_2.gguf ...
By default, all adapters will be loaded with scale set to 1. To initialize all adapters scale to 0, add --lora-init-without-apply
If an adapter is disabled, the scale will be set to 0.
Response format
[
{
"id": 0,
"path": "my_adapter_1.gguf",
"scale": 0.0
},
{
"id": 1,
"path": "my_adapter_2.gguf",
"scale": 0.0
}
]
To disable an adapter, either remove it from the list below, or set scale to 0.
Request format
To know the id
of the adapter, use GET /lora-adapters
[
{"id": 0, "scale": 0.2},
{"id": 1, "scale": 0.8}
]
Check the sample in chat.mjs. Run with NodeJS version 16 or later:
node chat.mjs
Another sample in chat.sh. Requires bash, curl and jq. Run with bash:
bash chat.sh
The HTTP llama-server
supports an OAI-like API: https://github.com/openai/openai-openapi
llama-server
returns errors in the same format as OAI: https://github.com/openai/openai-openapi
Example of an error:
{
"error": {
"code": 401,
"message": "Invalid API Key",
"type": "authentication_error"
}
}
Apart from error types supported by OAI, we also have custom types that are specific to functionalities of llama.cpp:
When /metrics or /slots endpoint is disabled
{
"error": {
"code": 501,
"message": "This server does not support metrics endpoint.",
"type": "not_supported_error"
}
}
*When the server receives invalid grammar via /completions endpoint
{
"error": {
"code": 400,
"message": "Failed to parse grammar",
"type": "invalid_request_error"
}
}
A new chat-based UI has replaced the old completion-based since this PR. If you want to use the old completion, start the server with --path ./examples/server/public_legacy
For example:
./llama-server -m my_model.gguf -c 8192 --path ./examples/server/public_legacy
You can extend the front end by running the server binary with --path
set to ./your-directory
and importing /completion.js
to get access to the llamaComplete() method.
Read the documentation in /completion.js
to see convenient ways to access llama.
A simple example is below:
<html>
<body>
<pre>
<script type="module">
import { llama } from '/completion.js'
const prompt = `### Instruction:
Write dad jokes, each one paragraph.
You can use html formatting if needed.
### Response:`
for await (const chunk of llama(prompt)) {
document.write(chunk.data.content)
}
</script>
</pre>
</body>
</html>